Haploidentical Stem Cell Transplantation in Adult Haematological Malignancies

Kevon Parmesar, Kavita Raj, Kevon Parmesar, Kavita Raj

Abstract

Haematopoietic stem cell transplantation is a well-established treatment option for both hematological malignancies and nonmalignant conditions such as aplastic anemia and haemoglobinopathies. For those patients lacking a suitable matched sibling or matched unrelated donor, haploidentical donors are an alternative expedient donor pool. Historically, haploidentical transplantation led to high rates of graft rejection and GVHD. Strategies to circumvent these issues include T cell depletion and management of complications thereof or T replete transplants with GVHD prophylaxis. This review is an overview of these strategies and contemporaneous outcomes for hematological malignancies in adult haploidentical stem cell transplant recipients.

Figures

Figure 1
Figure 1
Conditioning regimen used for nonmyeloablative haploidentical transplantation, using high dose cyclophosphamide (Cy) posttransplant for in vitro T cell depletion. Pretransplant conditioning involved Cy, fludarabine, and TBI, with administration of high dose Cy on day 3 (or days 3 and 4) after transplantation. GVHD prophylaxis consisting of tacrolimus and MMF was initiated after Cy. BMT: bone marrow transplantation, Cy: cyclophosphamide, TBI: total body irradiation, G-CSF: granulocyte colony stimulating factor, and MMF: mycophenolate mofetil.
Figure 2
Figure 2
Illustration of three types of NIMA-complementary HLA haploidentical stem cell transplants: A, B, and C. Transplantation from mother to offspring (A) causes a graft versus host (GVH) reaction against the inherited paternal antigen (IPA) and a host versus graft (HVG) reaction against the NIMA of offspring 1 (Mb). Transplantation from offspring to mother (B) causes a GVH reaction against the NIMA of offspring 2 (Ma) and HVG reaction against the inherited paternal antigen (IPA). Transplantation between NIMA-mismatched siblings with a shared IPA (C) involves bidirectional mismatch for the NIMA and bidirectional GVH/HVG reactions. Adapted from Ichinohe et al. [63].

References

    1. Thomas E. D., Lochte H. L., Jr., Cannon J. H., Sahler O. D., Ferrebee J. W. Supralethal whole body irradiation and isologous marrow transplantation in man. The Journal of Clinical Investigation. 1959;38(10):1709–1716. doi: 10.1172/jci103949.
    1. Gatti R. A., Meuwissen H. J., Allen H. D., Hong R., Good R. A. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. The Lancet. 1968;2(7583):1366–1369.
    1. Thomas E. D., Buckner C. D., Banaji M., et al. One hundred patients with acute leukemia treated by chemotherapy, total body irradiation, and allogenic marrow transplantation. Blood. 1977;49(4):511–533.
    1. Appelbaum F. R. Hematopoietic-cell transplantation at 50. The New England Journal of Medicine. 2007;357(15):1472–1475. doi: 10.1056/nejmp078166.
    1. Thomas E. D., Buckner C. D., Clift R. A., et al. Marrow transplantation for acute nonlymphoblastic leukemia in first remission. The New England Journal of Medicine. 1979;301(11):597–599. doi: 10.1056/nejm197909133011109.
    1. Weiden P. L., Flournoy N., Thomas E. D., et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. The New England Journal of Medicine. 1979;300(19):1068–1073. doi: 10.1056/nejm197905103001902.
    1. Copelan E. A. Hematopoietic stem-cell transplantation. The New England Journal of Medicine. 2006;354(17):1813–1826. doi: 10.1056/nejmra052638.
    1. Mughal T. I., Raj K. Port-wine-flavour bone-marrow sandwiches and beyond. The Lancet Oncology. 2009;10(9):p. 926. doi: 10.1016/s1470-2045(09)70146-9.
    1. Koh L.-P., Chao N. Haploidentical hematopoietic cell transplantation. Bone Marrow Transplantation. 2008;42(1):S60–S63. doi: 10.1038/bmt.2008.117.
    1. Giralt S. Reduced-intensity conditioning regimens for hematologic malignancies: what have we learned over the last 10 years? ASH Education Book. 2005;2005(1):384–389. doi: 10.1182/asheducation-2005.1.384.
    1. Saber W., Opie S., Rizzo J. D., Zhang M.-J., Horowitz M. M., Schriber J. Outcomes after matched unrelated donor versus identical sibling hematopoietic cell transplantation in adults with acute myelogenous leukemia. Blood. 2012;119(17):3908–3916. doi: 10.1182/blood-2011-09-381699.
    1. Saber W., Cutler C. S., Nakamura R., et al. Impact of donor source on hematopoietic cell transplantation outcomes for patients with myelodysplastic syndromes (MDS) Blood. 2013;122(11):1974–1982. doi: 10.1182/blood-2013-04-496778.
    1. Pasquini M., Zhu X. Current Use and Outcome of Hematopoietic Stem Cell Transplantation: CIBMTR Summary Slides. 2014. .
    1. Passweg J. R., Baldomero H., Bader P., et al. Hematopoietic SCT in Europe 2013: recent trends in the use of alternative donors showing more haploidentical donors but fewer cord blood transplants. Bone Marrow Transplantation. 2015;50(4):476–482. doi: 10.1038/bmt.2014.312.
    1. BMDW—Bone Marrow Donors Worldwide. Bone Marrow Donors Worldwide (BMDW),
    1. Gragert L., Eapen M., Williams E., et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. The New England Journal of Medicine. 2014;371(4):339–348. doi: 10.1056/nejmsa1311707.
    1. Switzer G. E., Bruce J. G., Myaskovsky L., et al. Race and ethnicity in decisions about unrelated hematopoietic stem cell donation. Blood. 2013;121(8):1469–1476. doi: 10.1182/blood-2012-06-437343.
    1. Beatty P. G., Mori M., Milford E. Impact of racial genetic polymorphism on the probability of finding an HLA-matched donor. Transplantation. 1995;60(8):778–783. doi: 10.1097/00007890-199510270-00003.
    1. Pidala J., Kim J., Schell M., et al. Race/ethnicity affects the probability of finding an HLA-A,-B,-C and-DRB1 allele-matched unrelated donor and likelihood of subsequent transplant utilization. Bone Marrow Transplantation. 2013;48(3):346–350. doi: 10.1038/bmt.2012.150.
    1. Barker J. N., Weisdorf D. J., DeFor T. E., et al. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood. 2005;105(3):1343–1347. doi: 10.1182/blood-2004-07-2717.
    1. Reisner Y., Hagin D., Martelli M. F. Haploidentical hematopoietic transplantation: current status and future perspectives. Blood. 2011;118(23):6006–6017. doi: 10.1182/blood-2011-07-338822.
    1. Library of Medicine. HLA Gene Family - Genetics Home Reference. URL http: US National; 2015.
    1. Spitzer T. Haploidentical stem cell transplantation: the always present but overlooked donor. ASH Education Program Book. 2005;2005(1):390–395.
    1. Fuchs E. J. Haploidentical transplantation for hematologic malignancies: where do we stand? ASH Education Book. 2012;2012(1):230–236. doi: 10.1182/asheducation-2012.1.230.
    1. Patriarca F., Luznik L., Medeot M., et al. Experts' considerations on HLA-haploidentical stem cell transplantation. European Journal of Haematology. 2014;93(3):187–197. doi: 10.1111/ejh.12322.
    1. Ciurea S. O., Bayraktar U. D. ‘No donor’? Consider a haploidentical transplant. Blood Reviews. 2015;29(2):63–70. doi: 10.1016/j.blre.2014.09.009.
    1. Anasetti C., Amos D., Beatty P. G., et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. The New England Journal of Medicine. 1989;320(4):197–204. doi: 10.1056/nejm198901263200401.
    1. Beatty P. G., Clift R. A., Mickelson E. M., et al. Marrow transplantation from related donors other than HLA-identical siblings. The New England Journal of Medicine. 1985;313(13):765–771. doi: 10.1056/nejm198509263131301.
    1. Martin P. J., Hansen J. A., Buckner C. D., et al. Effects of in vitro depletion of T cells in HLA-identical allogeneic marrow grafts. Blood. 1985;66(3):664–672.
    1. Storb R., Doney K. C., Thomas E. D., et al. Marrow transplantation with or without donor buffy coat cells for 65 transfused aplastic anemia patients. Blood. 1982;59(2):236–246.
    1. Aversa F., Tabilio A., Velardi A., et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched hla haplotype. The New England Journal of Medicine. 1998;339(17):1186–1193. doi: 10.1056/nejm199810223391702.
    1. Aversa F., Tabilio A., Terenzi A., et al. Successful engraftment of T-cell-depleted haploidentical ‘Three-Loci’ incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood. 1994;84(11):3948–3955.
    1. Aversa F., Reisner Y., Martelli M. F. The haploidentical option for high-risk haematological malignancies. Blood Cells, Molecules, and Diseases. 2008;40(1):8–12. doi: 10.1016/j.bcmd.2007.07.004.
    1. Rachamim N., Gan J., Segall H., et al. Tolerance induction by “mega-dose” hematopoietic transplants: donor-type human CD34 stem cells induce potent specific reduction of host anti-donor cytotoxic T lymphocyte precursors in mixed lymphocyte culture. Transplantation. 1998;65(10):1386–1393.
    1. Bethge W. A., Haegele M., Faul C., et al. Haploidentical allogeneic hematopoietic cell transplantation in adults with reduced-intensity conditioning and CD3/CD19 depletion: fast engraftment and low toxicity. Experimental Hematology. 2006;34(12):1746–1752. doi: 10.1016/j.exphem.2006.08.009.
    1. André-Schmutz I., Le Deist F., Hacein-Bey-Abina S., et al. Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. The Lancet. 2002;360(9327):130–137. doi: 10.1016/s0140-6736(02)09413-8.
    1. Mielke S., McIver Z. A., Shenoy A., et al. Selectively T cell-depleted allografts from hla-matched sibling donors followed by low-dose posttransplantation immunosuppression to improve transplantation outcome in patients with hematologic malignancies. Biology of Blood and Marrow Transplantation. 2011;17(12):1855–1861. doi: 10.1016/j.bbmt.2011.05.019.
    1. Chao N. Memory T cells. Biology of Blood and Marrow Transplantation. 2008;14(1, supplement 1):17–22. doi: 10.1016/j.bbmt.2007.10.013.
    1. Chen B. J., Cui X., Sempowski G. D., Liu C., Chao N. J. Transfer of allogeneic CD62L—memory T cells without graft-versus-host disease. Blood. 2004;103(4):1534–1541. doi: 10.1182/blood-2003-08-2987.
    1. Anderson B. E., McNiff J., Yan J., et al. Memory CD4+ T cells do not induce graft-versus-host disease. The Journal of Clinical Investigation. 2003;112(1):101–108. doi: 10.1172/jci200317601.
    1. Distler E., Bloetz A., Albrecht J., et al. Alloreactive and leukemia-reactive T cells are preferentially derived from naïve precursors in healthy donors: implications for immunotherapy with memory T cells. Haematologica. 2011;96(7):1024–1032. doi: 10.3324/haematol.2010.037481.
    1. Teschner D., Distler E., Wehler D., et al. Depletion of naive T cells using clinical grade magnetic CD45RA beads: a new approach for GVHD prophylaxis. Bone Marrow Transplantation. 2014;49(1):138–144. doi: 10.1038/bmt.2013.114.
    1. Shook D. R., Triplett B. M., Eldridge P. W., Kang G., Srinivasan A., Leung W. Haploidentical stem cell transplantation augmented by CD45RA negative lymphocytes provides rapid engraftment and excellent tolerability. Pediatric Blood & Cancer. 2015;62(4):666–673. doi: 10.1002/pbc.25352.
    1. Vignali D. A. A., Collison L. W., Workman C. J. How regulatory T cells work. Nature Reviews Immunology. 2008;8(7):523–532. doi: 10.1038/nri2343.
    1. Miyara M., Sakaguchi S. Human FoxP3+ CD4+ regulatory T cells: their knowns and unknowns. Immunology and Cell Biology. 2011;89(3):346–351. doi: 10.1038/icb.2010.137.
    1. Edinger M., Hoffmann P., Ermann J., et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nature Medicine. 2003;9(9):1144–1150. doi: 10.1038/nm915.
    1. Martelli M. F., Di Ianni M., Ruggeri L., et al. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood. 2014;124(4):638–644. doi: 10.1182/blood-2014-03-564401.
    1. Ruggeri L., Mancusi A., Capanni M., et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110(1):433–440. doi: 10.1182/blood-2006-07-038687.
    1. Stern M., Ruggeri L., Mancusi A., et al. Survival after T cell–depleted haploidentical stem cell transplantation is improved using the mother as donor. Blood. 2008;112(7):2990–2995. doi: 10.1182/blood-2008-01-135285.
    1. Luznik L., O'Donnell P. V., Symons H. J., et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biology of Blood and Marrow Transplantation. 2008;14(6):641–650. doi: 10.1016/j.bbmt.2008.03.005.
    1. Munchel A., Kesserwan C., Symons H. J., et al. Nonmyeloablative, HLA-haploidentical bone marrow transplantation with high dose, post-transplantation cyclophosphamide. Pediatric Reports. 2011;3(supplement 2) doi: 10.4081/pr.2011.s2.e15.
    1. Alpdogan O., Grosso D., Flomenberg N. Recent advances in haploidentical stem cell transplantation. Discovery Medicine. 2013;16(88):159–165.
    1. Luznik L., Jones R. J., Fuchs E. J. High-dose cyclophosphamide for graft-versus-host disease prevention. Current Opinion in Hematology. 2010;17(6):493–499. doi: 10.1097/MOH.0b013e32833eaf1b.
    1. Raj K., Pagliuca A., Bradstock K., et al. Peripheral blood hematopoietic stem cells for transplantation of hematological diseases from related, haploidentical donors after reduced-intensity conditioning. Biology of Blood and Marrow Transplantation. 2014;20(6):890–895. doi: 10.1016/j.bbmt.2014.03.003.
    1. Raiola A., Dominietto A., Varaldo R., et al. Unmanipulated haploidentical BMT following non-myeloablative conditioning and post-transplantation CY for advanced Hodgkin's lymphoma. Bone Marrow Transplantation. 2014;49(2):190–194. doi: 10.1038/bmt.2013.166.
    1. Bashey A., Zhang X., Sizemore C. A., et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. Journal of Clinical Oncology. 2013;31(10):1310–1316. doi: 10.1200/jco.2012.44.3523.
    1. Ciceri F., Bregni M., Peccatori J. Innovative platforms for haploidentical stem cell transplantation: the role of unmanipulated donor graft. Journal of Cancer. 2011;2(1):339–340. doi: 10.7150/jca.2.339.
    1. Peccatori J., Clerici D., Forcina A. In-vivo T-regs generation by rapamycin-mycophenolate-ATG as a new platform for GVHD prophylaxis in T-cell repleted unmanipulated haploidentical peripheral stem cell transplantation: results in 59 patients. Bone Marrow Transplantation. 2010;45(supplement 2):p. S3.
    1. Di Ianni M., Falzetti F., Carotti A., et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117(14):3921–3928. doi: 10.1182/blood-2010-10-311894.
    1. Huang X.-J., Liu D.-H., Liu K.-Y., et al. Treatment of acute leukemia with unmanipulated HLA-mismatched/haploidentical blood and bone marrow transplantation. Biology of Blood and Marrow Transplantation. 2009;15(2):257–265. doi: 10.1016/j.bbmt.2008.11.025.
    1. Bartolomeo P. D., Santarone S., De Angelis G., et al. Haploidentical, unmanipulated, G-CSF-primed bone marrow transplantation for patients with high-risk hematologic malignancies. Blood. 2013;121(5):849–857. doi: 10.1182/blood-2012-08-453399.
    1. Wang Y., Chang Y.-J., Xu L.-P., et al. Who is the best donor for a related HLA haplotype-mismatched transplant? Blood. 2014;124(6):843–850. doi: 10.1182/blood-2014-03-563130.
    1. Ichinohe T., Uchiyama T., Shimazaki C., et al. Feasibility of HLA-haploidentical hematopoietic stem cell transplantation between noninherited maternal antigen (NIMA)-mismatched family members linked with long-term fetomaternal microchimerism. Blood. 2004;104(12):3821–3828. doi: 10.1182/blood-2004-03-1212.
    1. Cai J., Lee J., Jankowska-Gan E., et al. Minor H antigen HA-1-specific regulator and effector CD8+ T cells, and HA-1 microchimerism, in allograft tolerance. The Journal of Experimental Medicine. 2004;199(7):1017–1023. doi: 10.1084/jem.20031012.
    1. Ciurea S. O., Zhang M.-J., Bacigalupo A. A., et al. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126(8):1033–1040. doi: 10.1182/blood-2015-04-639831.
    1. Di Stasi A., Milton D. R., Poon L. M., et al. Similar transplantation outcomes for acute myeloid leukemia and myelodysplastic syndrome patients with haploidentical versus 10/10 human leukocyte antigen-matched unrelated and related donors. Biology of Blood and Marrow Transplantation. 2014;20(12):1975–1981. doi: 10.1016/j.bbmt.2014.08.013.
    1. Wang Y., Liu Q.-F., Xu L.-P., et al. Haploidentical vs identical-sibling transplant for AML in remission: a multicenter, prospective study. Blood. 2015;125(25):3956–3962. doi: 10.1182/blood-2015-02-627786.
    1. Gao L., Zhang C., Gao L., et al. Favorable outcome of haploidentical hematopoietic stem cell transplantation in Philadelphia chromosome-positive acute lymphoblastic leukemia: a multicenter study in Southwest China. Journal of Hematology and Oncology. 2015;8, article 90 doi: 10.1186/s13045-015-0186-5.
    1. Ruggeri A., Labopin M., Sanz G., et al. Comparison of outcomes after unrelated cord blood and unmanipulated haploidentical stem cell transplantation in adults with acute leukemia. Leukemia. 2015;29(9):1891–1900. doi: 10.1038/leu.2015.98.
    1. Ringdén O., Labopin M., Ciceri F., et al. Is there a stronger graft-versus-leukemia effect using HLA-haploidentical donors compared with HLA-identical siblings? Leukemia. 2016;30(2):447–455. doi: 10.1038/leu.2015.232.
    1. Burroughs L. M., O'Donnell P. V., Sandmaier B. M., et al. Comparison of outcomes of HLA-matched related, unrelated, or HLA-haploidentical related hematopoietic cell transplantation following nonmyeloablative conditioning for relapsed or refractory Hodgkin lymphoma. Biology of Blood and Marrow Transplantation. 2008;14(11):1279–1287. doi: 10.1016/j.bbmt.2008.08.014.
    1. Kanate A. S., Mussetti A., Kharfan-Dabaja M. A., et al. Reduced-intensity transplantation for lymphomas using haploidentical related donors vs HLA-matched unrelated donors. Blood. 2016;127(7):938–947. doi: 10.1182/blood-2015-09-671834.
    1. Bashey A., Zhang X., Jackson K., et al. Comparison of outcomes of hematopoietic cell transplants from T-replete haploidentical donors using post-transplantation cyclophosphamide with 10 of 10 HLA-A, -B, -C, -DRB1, and -DQB1 allele-matched unrelated donors and HLA-identical sibling donors: a multivariable analysis including disease risk index. Biology of Blood and Marrow Transplantation. 2016;22(1):125–133. doi: 10.1016/j.bbmt.2015.09.002.
    1. Blaise D., Fürst S., Crocchiolo R., et al. Haploidentical T cell–replete transplantation with post-transplantation cyclophosphamide for patients in or above the sixth decade of age compared with allogeneic hematopoietic stem cell transplantation from an human leukocyte antigen–matched related or unrelated donor. Biology of Blood and Marrow Transplantation. 2016;22(1):119–124. doi: 10.1016/j.bbmt.2015.08.029.
    1. Castagna L., Crocchiolo R., Furst S., et al. Bone marrow compared with peripheral blood stem cells for haploidentical transplantation with a nonmyeloablative conditioning regimen and post-transplantation cyclophosphamide. Biology of Blood and Marrow Transplantation. 2014;20(5):724–729. doi: 10.1016/j.bbmt.2014.02.001.
    1. Gaballa S., Palmisiano N., Alpdogan O., Carabasi M., Filicko-O'Hara J., Kasner M., et al. A two-step haploidentical versus a two-step matched related allogeneic myeloablative peripheral blood stem cell transplantation. Biology of Blood and Marrow Transplantation. 2016;22(1):141–148. doi: 10.1016/j.bbmt.2015.09.017.
    1. Grosso D., Carabasi M., Filicko-O'Hara J., et al. A2-step approach to myeloablative haploidentical stem cell transplantation: a phase 1/2 trial performed with optimized T-cell dosing. Blood. 2011;118(17):4732–4739. doi: 10.1182/blood-2011-07-365338.
    1. Grosso D., Gaballa S., Alpdogan O., et al. A two-step approach to myeloablative haploidentical transplantation: low nonrelapse mortality and high survival confirmed in patients with earlier stage disease. Biology of Blood and Marrow Transplantation. 2015;21(4):646–652. doi: 10.1016/j.bbmt.2014.12.019.
    1. Nakamae H., Koh H., Katayama T., et al. HLA haploidentical peripheral blood stem cell transplantation using reduced dose of posttransplantation cyclophosphamide for poor-prognosis or refractory leukemia and myelodysplastic syndrome. Experimental Hematology. 2015;43(11):921.e1–929.e1. doi: 10.1016/j.exphem.2015.07.006.
    1. Raiola A. M., Dominietto A., Ghiso A., et al. Unmanipulated haploidentical bone marrow transplantation and posttransplantation cyclophosphamide for hematologic malignancies after myeloablative conditioning. Biology of Blood and Marrow Transplantation. 2013;19(1):117–122. doi: 10.1016/j.bbmt.2012.08.014.
    1. Raiola A. M., Dominietto A., di Grazia C., et al. Unmanipulated haploidentical transplants compared with other alternative donors and matched sibling grafts. Biology of Blood and Marrow Transplantation. 2014;20(10):1573–1579. doi: 10.1016/j.bbmt.2014.05.029.
    1. Solomon S. R., Sizemore C. A., Sanacore M., et al. Haploidentical transplantation using T cell replete peripheral blood stem cells and myeloablative conditioning in patients with high-risk hematologic malignancies who lack conventional donors is well tolerated and produces excellent relapse-free survival: results of a prospective phase II trial. Biology of Blood and Marrow Transplantation. 2012;18(12):1859–1866. doi: 10.1016/j.bbmt.2012.06.019.
    1. Kasamon Y. L., Luznik L., Leffell M. S., et al. Nonmyeloablative HLA-haploidentical bone marrow transplantation with high-dose posttransplantation cyclophosphamide: effect of HLA disparity on outcome. Biology of Blood and Marrow Transplantation. 2010;16(4):482–489. doi: 10.1016/j.bbmt.2009.11.011.
    1. Ciceri F., Labopin M., Aversa F., et al. A survey of fully haploidentical hematopoietic stem cell transplantation in adults with high-risk acute leukemia: a risk factor analysis of outcomes for patients in remission at transplantation. Blood. 2008;112(9):3574–3581. doi: 10.1182/blood-2008-02-140095.
    1. Luo Y., Xiao H., Lai X., et al. T-cell-replete haploidentical HSCT with low-dose anti-T-lymphocyte globulin compared with matched sibling HSCT and unrelated HSCT. Blood. 2014;124(17):2735–2743. doi: 10.1182/blood-2014-04-571570.
    1. McKiernan P., Vesole D., Siegel D., et al. Haploidentical allogeneic transplantation as salvage in relapsed multiple myeloma. Blood. 2014;124(21):p. 5918.

Source: PubMed

3
Prenumerera