Muscle wasting in myotonic dystrophies: a model of premature aging

Alba Judith Mateos-Aierdi, Maria Goicoechea, Ana Aiastui, Roberto Fernández-Torrón, Mikel Garcia-Puga, Ander Matheu, Adolfo López de Munain, Alba Judith Mateos-Aierdi, Maria Goicoechea, Ana Aiastui, Roberto Fernández-Torrón, Mikel Garcia-Puga, Ander Matheu, Adolfo López de Munain

Abstract

Myotonic dystrophy type 1 (DM1 or Steinert's disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age-dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3' untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9 (CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA-binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.

Keywords: aging; muscle wasting; myotonic dystrophy; sarcopenia; satellite cells.

Figures

Figure 1
Figure 1
Representation of the DM-causing genes, the location of the tandem repeats and their neighboring genes.
Figure 2
Figure 2
Summary of main symptoms affecting DM patients, which constitute the multisystem affectation found on them.
Figure 3
Figure 3
Representation of potential pathogenic mechanisms that explain the effect of DNA expansions in DM1-affected cells and the phenotype seen in patients.
Figure 4
Figure 4
The figure represents six cellular events that happen in both aging and myotonic dystrophy.

References

    1. Achiron A., Barak Y., Magal N., Shohat M., Cohen M., Barar R., et al. . (1998). Abnormal liver test results in myotonic dystrophy. J. Clin. Gastroenterol. 26, 292–295. 10.1097/00004836-199806000-00016
    1. Alwazzan M., Newman E., Hamshere M. G., Brook J. D. (1999). Myotonic dystrophy is associated with a reduced level of RNA from the DMWD allele adjacent to the expanded repeat. Hum. Mol. Genet. 8, 1491–1497. 10.1093/hmg/8.8.1491
    1. Andersson V., Hanzén S., Liu B., Molin M., Nyström T. (2013). Enhancing protein disaggregation restores proteasome activity in aged cells. Aging (Albany NY) 5, 802–812.
    1. Antonini G., Giubilei F., Mammarella A., Amicucci P., Fiorelli M., Gragnani F., et al. . (2000). Natural history of cardiac involvement in myotonic dystrophy: correlation with CTG repeats. Neurology 55, 1207–1209. 10.1212/wnl.55.8.1207
    1. Anvret M., Ahlberg G., Grandell U., Hedberg B., Johnson K., Edstrom L. (1993). Larger expansions of the CTG repeat in muscle compared to lymphocytes from patients with myotonic dystrophy. Hum. Mol. Genet. 2, 1397–1400. 10.1093/hmg/2.9.1397
    1. Arsenault M. E., Prévost C., Lescault A., Laberge C., Puymirat J., Mathieu J. (2006). Clinical characteristics of myotonic dystrophy type 1 patients with small CTG expansions. Neurology 66, 1248–1250. 10.1212/01.wnl.0000208513.48550.08
    1. Bassez G., Chapoy E., Bastuji-Garin S., Radvanyi-Hoffman H., Authier F. J., Pellissier J. F., et al. . (2008). Type 2 myotonic dystrophy can be predicted by the combination of type 2 muscle fiber central nucleation and scattered atrophy. J. Neuropathol. Exp. Neurol. 67, 319–325. 10.1097/NEN.0b013e31816b4acc
    1. Beaulieu D., Thebault P., Pelletier R., Chapdelaine P., Tarnopolsky M., Furling D., et al. . (2012). Abnormal prostaglandin E2 production blocks myogenic differentiation in myotonic dystrophy. Neurobiol. Dis. 45, 122–129. 10.1016/j.nbd.2011.06.014
    1. Beffy P., Del Carratore R., Masini M., Furling D., Puymirat J., Masiello P., et al. . (2010). Altered signal transduction pathways and induction of autophagy in human myotonic dystrophy type 1 myoblasts. Int. J. Biochem. Cell Biol. 42, 1973–1983. 10.1016/j.biocel.2010.08.010
    1. Bellini M., Biagi S., Stasi C., Costa F., Mumolo M. G., Ricchiuti A., et al. . (2006). Gastrointestinal manifestations in myotonic muscular dystrophy. World J. Gastroenterol. 12, 1821–1828. 10.3748/wjg.v12.i12.1821
    1. Bentzinger C. F., Wang Y. X., von Maltzahn J., Soleimani V. D., Yin H., Rudnicki M. A. (2013). Fibronectin regulates Wnt7a signaling and satellite cell expansion. Cell Stem Cell 12, 75–87. 10.1016/j.stem.2012.09.015
    1. Bernet J. D., Doles J. D., Hall J. K., Kelly Tanaka K., Carter T. A., Olwin B. B. (2014). p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20, 265–271. 10.1038/nm.3465
    1. Berul C. I., Maguire C. T., Aronovitz M. J., Greenwood J., Miller C., Gehrmann J., et al. . (1999). DMPK dosage alterations result in atrioventricular conduction abnormalities in a mouse myotonic dystrophy model. J. Clin. Invest. 103, R1–R7. 10.1172/jci5346
    1. Bhakta D., Lowe M. R., Groh W. J. (2004). Prevalence of structural cardiac abnormalities in patients with myotonic dystrophy type I. Am. Heart J. 147, 224–227. 10.1016/s0002-8703(03)00636-7
    1. Bigot A., Klein A. F., Gasnier E., Jacquemin V., Ravassard P., Butler-Browne G., et al. . (2009). Large CTG repeats trigger p16-dependent premature senescence in myotonic dystrophy type 1 muscle precursor cells. Am. J. Pathol. 174, 1435–1442. 10.2353/ajpath.2009.080560
    1. Blasco M. A. (2007). Telomere length, stem cells and aging. Nat. Chem. Biol. 3, 640–649. 10.1038/nchembio.2007.38
    1. Brack A. S., Rando T. A. (2007). Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev. 3, 226–237. 10.1007/s12015-007-9000-2
    1. Bratic A., Larsson N. G. (2013). The role of mitochondria in aging. J. Clin. Invest. 123, 951–957. 10.1172/JCI64125
    1. Brook J. D., McCurrach M. E., Harley H. G., Buckler A. J., Church D., Aburatani H., et al. . (1992). Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell 68, 799–808. 10.1016/0092-8674(92)90154-5
    1. Brouwer J. R., Huguet A., Nicole A., Munnich A., Gourdon G. (2013). Transcriptionally repressive chromatin remodelling and CpG methylation in the presence of expanded CTG-repeats at the DM1 locus. J. Nucleic Acids 2013:567435. 10.1155/2013/567435
    1. Bujanda L., López de M. A., Alcón A., Gutiérrez Stampa M. A., Martínez Pérez-Balsa A., Arenas J. I. (1997). The gastrointestinal changes in dystrophia myotonica. Rev. Esp. Enferm. Dig. 89, 711–714.
    1. Calderwood S. K., Murshid A., Prince T. (2009). The shock of aging: molecular chaperones and the heat shock response in longevity and aging–a mini-review. Gerontology 55, 550–558. 10.1159/000225957
    1. Carlson M. E., Conboy I. M. (2007). Loss of stem cell regenerative capacity within aged niches. Aging Cell 6, 371–382. 10.1111/j.1474-9726.2007.00286.x
    1. Carlson M. E., Conboy M. J., Hsu M., Barchas L., Jeong J., Agrawal A., et al. . (2009). Relative roles of TGF-beta1 and Wnt in the systemic regulation and aging of satellite cell responses. Aging Cell 8, 676–689. 10.1111/j.1474-9726.2009.00517.x
    1. Chakkalakal J. V., Jones K. M., Basson M. A., Brack A. S. (2012). The aged niche disrupts muscle stem cell quiescence. Nature 490, 355–360. 10.1038/nature11438
    1. Chargé S. B., Rudnicki M. A. (2004). Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84, 209–238. 10.1152/physrev.00019.2003
    1. Chen W., Wang Y., Abe Y., Cheney L., Udd B., Li Y. P. (2007). Haploinsuffciency for Znf9 in Znf9+/– mice is associated with multiorgan abnormalities resembling myotonic dystrophy. J. Mol. Biol. 368, 8–17. 10.1016/j.jmb.2007.01.088
    1. Chiu C. P., Dragowska W., Kim N. W., Vaziri H., Yui J., Thomas T. E., et al. . (1996). Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 14, 239–248. 10.1002/stem.140239
    1. Chondrogianni N., Petropoulos I., Grimm S., Georgila K., Catalgol B., Friguet B., et al. . (2014). Protein damage, repair and proteolysis. Mol. Aspects Med. 35, 1–71. 10.1016/j.mam.2012.09.001
    1. Collins C. A., Zammit P. S., Ruiz A. P., Morgan J. E., Partridge T. A. (2007). A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25, 885–894. 10.1634/stemcells.2006-0372
    1. Conboy I. M., Conboy M. J., Wagers A. J., Girma E. R., Weissman I. L., Rando T. A. (2005). Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764. 10.1038/nature03260
    1. Concannon C., Lahue R. S. (2013). The 26S proteasome drives trinucleotide repeat expansions. Nucleic Acids Res. 41, 6098–6108. 10.1093/nar/gkt295
    1. Concannon C., Lahue R. S. (2014). Nucleotide excision repair and the 26S proteasome function together to promote trinucleotide repeat expansions. DNA Repair (Amst) 13, 42–49. 10.1016/j.dnarep.2013.11.004
    1. Cosgrove B. D., Gilbert P. M., Porpiglia E., Mourkioti F., Lee S. P., Corbel S. Y., et al. . (2014). Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med. 20, 255–264. 10.1038/nm.3464
    1. Cudia P., Bernasconi P., Chiodelli R., Mangiola F., Bellocci F., Dello Russo A., et al. . (2009). Risk of arrhythmia in type I myotonic dystrophy: the role of clinical and genetic variables. J. Neurol. Neurosurg. Psychiatry 80, 790–793. 10.1136/jnnp.2008.162594
    1. Day J. W., Ricker K., Jacobsen J. F., Rasmussen L. J., Dick K. A., Kress W., et al. . (2003). Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology 60, 657–664. 10.1212/01.wnl.0000054481.84978.f9
    1. Day K., Shefer G., Shearer A., Yablonka-Reuveni Z. (2010). The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Dev. Biol. 340, 330–343. 10.1016/j.ydbio.2010.01.006
    1. De Ambroggi L., Raisaro A., Marchianó V., Radice S., Meola G. (1995). Cardiac involvement in patients with myotonic dystrophy: characteristic features of magnetic resonance imaging. Eur. Heart J. 16, 1007–1010.
    1. Debacker K., Frizzell A., Gleeson O., Kirkham-McCarthy L., Mertz T., Lahue R. S. (2012). Histone deacetylase complexes promote trinucleotide repeat expansions. PLoS Biol. 10:e1001257. 10.1371/journal.pbio.1001257
    1. Denis J. A., Gauthier M., Rachdi L., Aubert S., Giraud-Triboult K., Poydenot P., et al. . (2013). mTOR-dependent proliferation defect in human ES-derived neural stem cells affected by myotonic dystrophy type 1. J. Cell Sci. 126, 1763–1772. 10.1242/jcs.116285
    1. Du J., Campau E., Soragni E., Jespersen C., Gottesfeld J. M. (2013). Length-dependent CTG.CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent stem cells. Hum. Mol. Genet. 22, 5276–5287. 10.1093/hmg/ddt386
    1. Du H., Cline M. S., Osborne R. J., Tuttle D. L., Clark T. A., Donohue J. P., et al. . (2010). Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy. Nat. Struct. Mol. Biol. 17, 187–193. 10.1038/nsmb.1720
    1. Ercolin B., Sassi F. C., Mangilli L. D., Mendonça L. I., Limongi S. C., de Andrade C. R. (2013). Oral motor movements and swallowing in patients with myotonic dystrophy type 1. Dysphagia 28, 446–454. 10.1007/s00455-013-9458-9
    1. Espejel S., Martín M., Klatt P., Martín-Caballero J., Flores J. M., Blasco M. A. (2004). Shorter telomeres, accelerated ageing and increased lymphoma in DNA-PKcs-deficient mice. EMBO Rep. 5, 503–509. 10.1038/sj.embor.7400127
    1. Evans W. J., Campbell W. W. (1993). Sarcopenia and age-related changes in body composition and functional capacity. J. Nutr. 123, 465–468.
    1. Ferrington D. A., Husom A. D., Thompson L. V. (2005). Altered proteasome structure, function and oxidation in aged muscle. FASEB J. 19, 644–646. 10.1096/fj.04-2578fje
    1. Ferrón S., Mira H., Franco S., Cano-Jaimez M., Bellmunt E., Ramirez C., et al. . (2004). Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells. Development 131, 4059–4070. 10.1242/dev.01215
    1. Fielding R. A., Vellas B., Evans W. J., Bhasin S., Morley J. E., Newman A. B., et al. . (2011). Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 12, 249–256. 10.1016/j.jamda.2011.01.003
    1. Filippova G. N., Thienes C. P., Penn B. H., Cho D. H., Hu Y. J., Moore J. M., et al. . (2001). CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat. Genet. 28, 335–343. 10.1038/ng570
    1. Flores I., Cayuela M. L., Blasco M. A. (2005). Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309, 1253–1256. 10.1126/science.1115025
    1. Fraga M. F., Esteller M. (2007). Epigenetics and aging: the targets and the marks. Trends Genet. 23, 413–418. 10.1016/j.tig.2007.05.008
    1. Frisch R., Singleton K. R., Moses P. A., Gonzalez I. L., Carango P., Marks H. G., et al. . (2001). Effect of triplet repeat expansion on chromatin structure and expression of DMPK and neighboring genes, SIX5 and DMWD, in myotonic dystrophy. Mol. Genet. Metab. 74, 281–291. 10.1006/mgme.2001.3229
    1. Fu Y. H., Friedman D. L., Richards S., Pearlman J. A., Gibbs R. A., Pizzuti A., et al. . (1993). Decreased expression of myotonin-protein kinase messenger RNA and protein in adult form of myotonic dystrophy. Science 260, 235–238. 10.1126/science.8469976
    1. Furling D., Coiffier L., Mouly V., Barbet J. P., St Guily J. L., Taneja K., et al. . (2001). Defective satellite cells in congenital myotonic dystrophy. Hum. Mol. Genet. 10, 2079–2087. 10.1093/hmg/10.19.2079
    1. Gadalla S. M., Pfeiffer R. M., Kristinsson S. Y., Björkholm M., Hilbert J. E., Moxley R. T., III, et al. . (2013). Quantifying cancer absolute risk and cancer mortality in the presence of competing events after a myotonic dystrophy diagnosis. PLoS One 8:e79851. 10.1371/journal.pone.0079851
    1. Ghorbani M., Taylor S. J., Pook M. A., Payne A. (2013). Comparative (computational) analysis of the DNA methylation status of trinucleotide repeat expansion diseases. J. Nucleic Acids 2013:689798. 10.1155/2013/689798
    1. Giagnacovo M., Malatesta M., Cardani R., Meola G., Pellicciari C. (2012). Nuclear ribonucleoprotein-containing foci increase in size in non-dividing cells from patients with myotonic dystrophy type 2. Histochem. Cell Biol. 138, 699–707. 10.1007/s00418-012-0984-6
    1. Gomes-Pereira M., Cooper T. A., Gourdon G. (2011). Myotonic dystrophy mouse models: towards rational therapy development. Trends Mol. Med. 17, 506–517. 10.1016/j.molmed.2011.05.004
    1. Gomes-Pereira M., Hilley J. D., Morales F., Adam B., James H. E., Monckton D. G. (2014). Disease-associated CAG.CTG triplet repeats expand rapidly in non-dividing mouse cells, but cell cycle arrest is insufficient to drive expansion. Nucleic Acids Res. 42, 7047–7056. 10.1093/nar/gku285
    1. Gopinath S. D., Rando T. A. (2008). Stem cell review series: aging of the skeletal muscle stem cell niche. Aging Cell 7, 590–598. 10.1111/j.1474-9726.2008.00399.x
    1. Gorbunova V., Seluanov A., Mao Z., Hine C. (2007). Changes in DNA repair during aging. Nucleic Acids Res. 35, 7466–7474. 10.1093/nar/gkm756
    1. Groh W. J., Groh M. R., Saha C., Kincaid J. C., Simmons Z., Ciafaloni E., et al. . (2008). Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N. Engl. J. Med. 358, 2688–2697. 10.1056/NEJMoa062800
    1. Han S., Brunet A. (2012). Histone methylation makes its mark on longevity. Trends Cell Biol. 22, 42–49. 10.1016/j.tcb.2011.11.001
    1. Harmon E. B., Harmon M. L., Larsen T. D., Paulson A. F., Perryman M. B. (2008). Myotonic dystrophy protein kinase is expressed in embryonic myocytes and is required for myotube formation. Dev. Dyn. 237, 2353–2366. 10.1002/dvdy.21653
    1. Harmon E. B., Harmon M. L., Larsen T. D., Yang J., Glasford J. W., Perryman M. B. (2011). Myotonic dystrophy protein kinase is critical for nuclear envelope integrity. J. Biol. Chem. 286, 40296–40306. 10.1074/jbc.M111.241455
    1. Harper P. S. (2001). Myotonic Dystrophy. 3rd Edn. London: WB Saunders.
    1. Harper J. C., Wells D., Piyamongkol W., Abou-Sleiman P., Apessos A., Ioulianos A., et al. . (2002). Preimplantation genetic diagnosis for single gene disorders: experience with five single gene disorders. Prenat. Diagn. 22, 525–533. 10.1002/pd.394
    1. He F., Todd P. K. (2011). Epigenetics in nucleotide repeat expansion disorders. Semin. Neurol. 31, 470–483. 10.1055/s-0031-1299786
    1. Hermans M. C., Faber C. G., Vanhoutte E. K., Bakkers M., De Baets M. H., de Die-Smulders C. E., et al. . (2011). Peripheral neuropathy in myotonic dystrophy type 1. J. Peripher. Nerv. Syst. 16, 24–29. 10.1111/j.1529-8027.2011.00313.x
    1. Houtkooper R. H., Pirinen E., Auwerx J. (2012). Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225–238. 10.1038/nrm3293
    1. Huguet A., Medja F., Nicole A., Vignaud A., Guiraud-Dogan C., Ferry A., et al. . (2012). Molecular, physiological and motor performance defects in DMSXL mice carrying >1,000 CTG repeats from the human DM1 locus. PLoS Genet. 8:e1003043. 10.1371/journal.pgen.1003043
    1. Huichalaf C., Sakai K., Jin B., Jones K., Wang G. L., Schoser B., et al. . (2010). Expansion of CUG RNA repeats causes stress and inhibition of translation in myotonic dystrophy 1 (DM1) cells. FASEB J. 24, 3706–3719. 10.1096/fj.09-151159
    1. Husom A. D., Peters E. A., Kolling E. A., Fugere N. A., Thompson L. V., Ferrington D. A. (2004). Altered proteasome function and subunit composition in aged muscle. Arch. Biochem. Biophys. 421, 67–76. 10.1016/j.abb.2003.10.010
    1. Imai S., Guarente L. (2014). NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464–471. 10.1016/j.tcb.2014.04.002
    1. Jansen G., Groenen P. J., Bächner D., Jap P. H., Coerwinkel M., Oerlemans F., et al. . (1996). Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nat. Genet. 13, 316–324. 10.1038/ng0796-316
    1. Jones K., Wei C., Iakova P., Bugiardini E., Schneider-Gold C., Meola G., et al. . (2012). GSK3beta mediates muscle pathology in myotonic dystrophy. J. Clin. Invest. 122, 4461–4472. 10.1172/JCI64081
    1. Kaeberlein M. (2008). The ongoing saga of sirtuins and aging. Cell Metab. 8, 4–5. 10.1016/j.cmet.2008.06.004
    1. Kaliman P., Catalucci D., Lam J. T., Kondo R., Paz Gutiérrez J. C., Reddy S., et al. . (2005). Myotonic dystrophy protein kinase phosphorylates phospholamban and regulates calcium uptake in cardyomyocyte sarcoplasmic reticulum. J. Biol. Chem. 280, 8016–8021. 10.1074/jbc.m412845200
    1. Kaminsky P., Pruna L. (2012). [A genetic systemic disease: clinical description of type 1 myotonic dystrophy in adults]. Rev. Med. Interne 33, 514–518. 10.1016/j.revmed.2012.03.355
    1. Kimizuka Y., Kiyosawa M., Tamai M., Takase S. (1993). Retinal changes in myotonic dystrophy. Clinical and follow-up evaluation. Retina 13, 129–135. 10.1097/00006982-199313020-00007
    1. Klesert T. R., Cho D. H., Clark J. I., Maylie J., Adelman J., Snider L., et al. . (2000). Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy. Nat. Genet. 25, 105–109. 10.1038/75490
    1. Klesert T. R., Otten A. D., Bird T. D., Tapscott S. J. (1997). Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP. Nat. Genet. 16, 402–406. 10.1038/ng0897-402
    1. Kovtun I. V., Spiro C., McMurray C. T. (2004). Triplet repeats and DNA repair: germ cell and somatic cell instability in transgenic mice. Methods Mol. Biol. 277, 309–319. 10.1385/1-59259-804-8:309
    1. Krishnan R., Lochhead J. (2010). Spontaneous bilateral lamellar macular holes and foveal schisis associated with myotonic dystrophy type 1. Clin. Experiment. Ophthalmol. 38, 82–84. 10.1111/j.1442-9071.2010.02195.x
    1. Lepper C., Partridge T. A., Fan C. M. (2011). An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138, 3639–3646. 10.1242/dev.067595
    1. Liquori C. L., Ricker K., Moseley M. L., Jacobsen J. F., Kress W., Naylor S. L., et al. . (2001). Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293, 864–867. 10.1126/science.1062125
    1. Liu L., Cheung T. H., Charville G. W., Hurgo B. M., Leavitt T., Shih J., et al. . (2013). Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep. 4, 189–204. 10.1016/j.celrep.2013.05.043
    1. Liu L., Rando T. A. (2011). Manifestations and mechanisms of stem cell aging. J. Cell Biol. 193, 257–266. 10.1083/jcb.201010131
    1. Locke M., Noble E. G., Atkinson B. G. (1991). Inducible isoform of HSP70 is constitutively expressed in a muscle fiber type specific pattern. Am. J. Physiol. 261, C774–C779.
    1. López Castel A., Nakamori M., Tomé S., Chitayat D., Gourdon G., Thornton C. A., et al. . (2011). Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum. Mol. Genet. 20, 1–15. 10.1093/hmg/ddq427
    1. López de Munain A., Blanco A., Emparanza J. I., Marti Massó J. F., Cobo A., Basauri B., et al. . (1994). Anticipation in myotonic dystrophy: a parental-sex-related phenomenon. Neuroepidemiology 13, 75–78. 10.1159/000110362
    1. López de Munain A., Blanco A., Emparanza J. I., Poza J. J., Martí Massó J. F., Cobo A., et al. . (1993). Prevalence of myotonic dystrophy in Guipuzcoa (Basque Country, Spain). Neurology 43, 1573–1576. 10.1212/wnl.43.8.1573
    1. López-Otín C., Blasco M. A., Partridge L., Serrano M., Kroemer G. (2013). The hallmarks of aging. Cell 153, 1194–1217. 10.1016/j.cell.2013.05.039
    1. Malatesta M. (2012). Skeletal muscle features in myotonic dystrophy and sarcopenia: do similar nuclear mechanisms lead to skeletal muscle wasting? Eur. J. Histochem. 56:e36. 10.4081/ejh.2012.e36
    1. Malatesta M., Cardani R., Pellicciari C., Meola G. (2014). RNA transcription and maturation in skeletal muscle cells are similarly impaired in myotonic dystrophy and sarcopenia: the ultrastructural evidence. Front. Aging Neurosci. 6:196. 10.3389/fnagi.2014.00196
    1. Malatesta M., Giagnacovo M., Cardani R., Meola G., Pellicciari C. (2011a). RNA processing is altered in skeletal muscle nuclei of patients affected by myotonic dystrophy. Histochem. Cell Biol. 135, 419–425. 10.1007/s00418-011-0797-z
    1. Malatesta M., Giagnacovo M., Renna L. V., Cardani R., Meola G., Pellicciari C. (2011b). Cultured myoblasts from patients affected by myotonic dystrophy type 2 exhibit senescence-related features: ultrastructural evidence. Eur. J. Histochem. 55:e26. 10.4081/ejh.2011.e26
    1. Malatesta M., Meola G. (2010). Structural and functional alterations of the cell nucleus in skeletal muscle wasting: the evidence in situ. Eur. J. Histochem. 54:e44. 10.4081/ejh.2010.e44
    1. Mammarella A., Paradiso M., Antonini G., Paoletti V., De Matteis A., Basili S., et al. . (2000). Natural history of cardiac involvement in myotonic dystrophy (Steinert’s disease): a 13-year follow-up study. Adv. Ther. 17, 238–251. 10.1007/bf02853163
    1. Mankodi A., Logigian E., Callahan L., McClain C., White R., Henderson D., et al. . (2000). Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289, 1769–1773. 10.1126/science.289.5485.1769
    1. Margarit E., Armas P., García Siburu N., Calcaterra N. B. (2014). CNBP modulates the transcription of Wnt signaling pathway components. Biochim. Biophys. Acta 1839, 1151–1160. 10.1016/j.bbagrm.2014.08.009
    1. Margolis J. M., Schoser B. G., Moseley M. L., Day J. W., Ranum L. P. (2006). DM2 intronic expansions: evidence for CCUG accumulation without flanking sequence or effects on ZNF9 mRNA processing or protein expression. Hum. Mol. Genet. 15, 1808–1815. 10.1093/hmg/ddl103
    1. Martorell L., Monckton D. G., Gamez J., Johnson K. J., Gich I., Lopez de Munain A., et al. . (1998). Progression of somatic CTG repeat length heterogeneity in the blood cells of myotonic dystrophy patients. Hum. Mol. Genet. 7, 307–312. 10.1093/hmg/7.2.307
    1. Mathieu J., Prévost C. (2012). Epidemiological surveillance of myotonic dystrophy type 1: a 25-year population-based study. Neuromuscul. Disord. 22, 974–979. 10.1016/j.nmd.2012.05.017
    1. Mauro A. (1961). Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495. 10.1083/jcb.9.2.493
    1. McMurray C. T. (2008). Hijacking of the mismatch repair system to cause CAG expansion and cell death in neurodegenerative disease. DNA Repair (Amst) 7, 1121–1134. 10.1016/j.dnarep.2008.03.013
    1. Michalowski S., Miller J. W., Urbinati C. R., Paliouras M., Swanson M. S., Griffith J. (1999). Visualization of double-stranded RNAs from the myotonic dystrophy protein kinase gene and interactions with CUG-binding protein. Nucleic Acids Res. 27, 3534–3542. 10.1093/nar/27.17.3534
    1. Miller J. W., Urbinati C. R., Teng-Umnuay P., Stenberg M. G., Byrne B. J., Thornton C. A., et al. . (2000). Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J. 19, 4439–4448. 10.1093/emboj/19.17.4439
    1. Modoni A., Silvestri G., Vita M. G., Quaranta D., Tonali P. A., Marra C. (2008). Cognitive impairment in myotonic dystrophy type 1 (DM1): a longitudinal follow-up study. J. Neurol. 255, 1737–1742. 10.1007/s00415-008-0017-5
    1. Monckton D. G., Wong L. J., Ashizawa T., Caskey C. T. (1995). Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum. Mol. Genet. 4, 1–8. 10.1093/hmg/4.1.1
    1. Morales F., Couto J. M., Higham C. F., Hogg G., Cuenca P., Braida C., et al. . (2012). Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity. Hum. Mol. Genet. 21, 3558–3567. 10.1093/hmg/dds185
    1. Morrison S. J., Prowse K. R., Ho P., Weissman I. L. (1996). Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5, 207–216. 10.1016/s1074-7613(00)80316-7
    1. Morrone A., Pegoraro E., Angelini C., Zammarchi E., Marconi G., Hoffman E. P. (1997). RNA metabolism in myotonic dystrophy: patient muscle shows decreased insulin receptor RNA and protein consistent with abnormal insulin resistance. J. Clin. Invest. 99, 1691–1698. 10.1172/jci119332
    1. Moskalev A. A., Shaposhnikov M. V., Plyusnina E. N., Zhavoronkov A., Budovsky A., Yanai H., et al. . (2013). The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res. Rev. 12, 661–684. 10.1016/j.arr.2012.02.001
    1. Mounsey J. P., John J. E., Helmke S. M., Bush E. W., Gilbert J., Roses A. D., et al. . (2000). Phospholemman is a substrate fro myotonic dystrophy protein kinase. J. Biol. Chem. 275, 23362–23367. 10.1074/jbc.m000899200
    1. Murányi A., Zhang R., Liu F., Hirano K., Ito M., Epstein H. F., et al. . (2001). Myotonic dystrophy protein kinase phosphorylates the myosin phosphatase targeting subunit and inhibits myosin phosphatase activity. FEBS Lett. 493, 80–84. 10.1016/s0014-5793(01)02283-9
    1. Murphy M. M., Lawson J. A., Mathew S. J., Hutcheson D. A., Kardon G. (2011). Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138, 3625–3637. 10.1242/dev.064162.8
    1. Naito A. T., Sumida T., Nomura S., Liu M. L., Higo T., Nakagawa A., et al. . (2012). Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes. Cell 149, 1298–1313. 10.1016/j.cell.2012.03.047
    1. O’Connor M. S., Carlson M. E., Conboy I. M. (2009). Differentiation rather than aging of muscle stem cells abolishes their telomerase activity. Biotechnol. Prog. 25, 1130–1137. 10.1002/btpr.223
    1. Ørngreen M. C., Arlien-Soborg P., Duno M., Hertz J. M., Vissing J. (2012). Endocrine function in 97 patients with myotonic dystrophy type 1. J. Neurol. 259, 912–920. 10.1007/s00415-011-6277-5
    1. Osborne R. J., Lin X., Welle S., Sobczak K., O’Rourke J. R., Swanson M. S., et al. . (2009). Transcriptional and post-transcriptional impact of toxic RNA in myotonic dystrophy. Hum. Mol. Genet. 18, 1471–1481. 10.1093/hmg/ddp058
    1. Oude Ophuis R. J., Wijers M., Bennink M. B., van de Loo F. A., Fransen J. A., Wieringa B., et al. . (2009). A tail-anchored myotonic dystrophy protein kinase isoform induces perinuclear clustering of mitochondria, autophagy and apoptosis. PLoS One 4:e8024. 10.1371/journal.pone.0008024
    1. Pan H., Li Y. Y., Li T. C., Tsai W. T., Li S. Y., Hsiao K. M. (2002). Increased (CTG/CAG)(n) lengths in myotonic dystrophy type 1 and Machado-Joseph disease genes in idiopathic azoospermia patients. Hum. Reprod. 17, 1578–1583. 10.1093/humrep/17.6.1578
    1. Pantic B., Trevisan E., Citta A., Rigobello M. P., Marin O., Bernardi P., et al. . (2013). Myotonic dystrophy protein kinase (DMPK) prevents ROS-induced cell death by assembling a hexokinase II-Src complex on the mitochondrial surface. Cell Death Dis. 4:e858. 10.1038/cddis.2013.385
    1. Pelargonio G., Dello Russo A., Sanna T., De Martino G., Bellocci F. (2002). Myotonic dystrophy and the heart. Heart 88, 665–670. 10.1136/heart.88.6.665
    1. Pelletier R., Hamel F., Beaulieu D., Patry L., Haineault C., Tarnopolsky M., et al. . (2009). Absence of a differentiation defect in muscle satellite cells from DM2 patients. Neurobiol. Dis. 36, 181–190. 10.1016/j.nbd.2009.07.009
    1. Petri H., Vissing J., Witting N., Bundgaard H., Køber L. (2012). Cardiac manifestations of myotonic dystrophy type 1. Int. J. Cardiol. 160, 82–88. 10.1016/j.ijcard.2011.08.037
    1. Pisani V., Panico M. B., Terracciano C., Bonifazi E., Meola G., Novelli G., et al. . (2008). Preferential central nucleation of type 2 myofibers is an invariable feature of myotonic dystrophy type 2. Muscle Nerve 38, 1405–1411. 10.1002/mus.21122
    1. Powers E. T., Morimoto R. I., Dillin A., Kelly J. W., Balch W. E. (2009). Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959–991. 10.1146/annurev.biochem.052308.114844
    1. Prabhu S., Raman B., Ramakrishna T., Rao C. (2012). HspB2/myotonic dystrophy protein kinase binding protein (MKBP) as a novel molecular chaperone: structural and functional aspects. PLoS One 7:e29810. 10.1371/journal.pone.0029810
    1. Raheem O., Olufemi S. E., Bachinski L. L., Vihola A., Sirito M., Holmlund-Hampf J., et al. . (2010). Mutant (CCTG)n expansion causes abnormal expression of zinc finger protein 9 (ZNF9) in myotonic dystrophy type 2. Am. J. Pathol. 177, 3025–3036. 10.2353/ajpath.2010.100179
    1. Reddy S., Smith D. B., Rich M. M., Leferovich J. M., Reilly P., Davis B. M., et al. . (1996). Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nat. Genet. 13, 325–335. 10.1038/ng0796-325
    1. Refsland E. W., Livingston D. M. (2005). Interactions among DNA ligase I, the flap endonuclease and proliferating cell nuclear antigen in the expansion and contraction of CAG repeat tracts in yeast. Genetics 171, 923–934. 10.1534/genetics.105.043448
    1. Renna L. V., Cardani R., Botta A., Rossi G., Fossati B., Costa E., et al. . (2014). Premature senescence in primary muscle cultures of myotonic dystrophy type 2 is not associated with p16 induction. Eur. J. Histochem. 58:2444. 10.4081/ejh.2014.2444
    1. Ricker K., Koch M. C., Lehmann-Horn F., Pongratz D., Otto M., Heine R., et al. . (1994). Proximal myotonic myopathy: a new dominant disorder with myotonia, muscle weakness and cataracts. Neurology 44, 1448–1452. 10.1212/WNL.44.8.1448
    1. Romeo V., Pegoraro E., Ferrati C., Squarzanti F., Soraru G., Palmieri A., et al. . (2010). Brain involvement in myotonic dystrophies: neuroimaging and neuropsychological comparative study in DM1 and DM2. J. Neurol. 257, 1246–1255. 10.1007/s00415-010-5498-3
    1. Rusconi F., Mancinelli E., Colombo G., Cardani R., Da Riva L., Bongarzone I., et al. . (2010). Proteome profile in Myotonic Dystrophy type 2 myotubes reveals dysfunction in protein processing and mitochondrial pathways. Neurobiol. Dis. 38, 273–280. 10.1016/j.nbd.2010.01.017
    1. Salisbury E., Sakai K., Schoser B., Huichalaf C., Schneider-Gold C., Nguyen H., et al. . (2008). Ectopic expression of cyclin D3 corrects differentiation of DM1 myoblasts through activation of RNA CUG-binding protein, CUGBP1. Exp. Cell Res. 314, 2266–2278. 10.1016/j.yexcr.2008.04.018
    1. Salisbury E., Schoser B., Schneider-Gold C., Wang G. L., Huichalaf C., Jin B., et al. . (2009). Expression of RNA CCUG repeats dysregulates translation and degradation of proteins in myotonic dystrophy 2 patients. Am. J. Pathol. 175, 748–762. 10.2353/ajpath.2009.090047
    1. Sambasivan R., Yao R., Kissenpfennig A., Van Wittenberghe L., Paldi A., Gayraud-Morel B., et al. . (2011). Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138, 3647–3656. 10.1242/dev.067587
    1. Santoro M., Masciullo M., Bonvissuto D., Bianchi M. L., Michetti F., Silvestri G. (2013). Alternative splicing of human insulin receptor gene (INSR) in type I and type II skeletal muscle fibers of patients with myotonic dystrophy type 1 and type 2. Mol. Cell. Biochem. 380, 259–265. 10.1007/s11010-013-1681-z
    1. Sanz A., Stefanatos R. K. (2008). The mitochondrial free radical theory of aging: a critical view. Curr. Aging Sci. 1, 10–21. 10.2174/1874609810801010010
    1. Sarkar P. S., Appukuttan B., Han J., Ito Y., Ai C., Tsai W., et al. . (2000). Heterozygous loss of Six5 in mice is sufficient to cause ocular cataracts. Nat. Genet. 25, 110–114. 10.1038/75500
    1. Sarkar P. S., Paul S., Han J., Reddy S. (2004). Six5 is required for spermatogenic cell survival and spermiogenesis. Hum. Mol. Genet. 13, 1421–1431. 10.1093/hmg/ddh161
    1. Savkur R. S., Philips A. V., Cooper T. A. (2001). Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat. Genet. 29, 40–47. 10.1038/ng704
    1. Savkur R. S., Philips A. V., Cooper T. A., Dalton J. C., Moseley M. L., Ranum L. P., et al. . (2004). Insulin receptor splicing alteration in myotonic dystrophy type 2. Am. J. Hum. Genet. 74, 1309–1313. 10.1086/421528
    1. Savouret C., Brisson E., Essers J., Kanaar R., Pastink A., te Riele H., et al. . (2003). CTG repeat instability and size variation timing in DNA repair-deficient mice. EMBO J. 22, 2264–2273. 10.1093/emboj/cdg202
    1. Schoser B. G., Schneider-Gold C., Kress W., Goebel H. H., Reilich P., Koch M. C., et al. . (2004). Muscle pathology in 57 patients with myotonic dystrophy type 2. Muscle Nerve 29, 275–281. 10.1002/mus.10545
    1. Screen M., Jonson P. H., Raheem O., Palmio J., Laaksonen R., Lehtimaki T., et al. . (2014). Abnormal splicing of NEDD4 in myotonic dystrophy type 2: possible link to statin adverse reactions. Am. J. Pathol. 184, 2322–2332. 10.1016/j.ajpath.2014.04.013
    1. Seriola A., Spits C., Simard J. P., Hilven P., Haentjens P., Pearson C. E., et al. . (2011). Huntington’s and myotonic dystrophy hESCs: down-regulated trinucleotide repeat instability and mismatch repair machinery expression upon differentiation. Hum. Mol. Genet. 20, 176–185. 10.1093/hmg/ddq456
    1. Seznec H., Agbulut O., Sergeant N., Savouret C., Ghestem A., Tabti N., et al. . (2001). Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. Hum. Mol. Genet. 10, 2717–2726. 10.1093/hmg/10.23.2717
    1. Shefer G., Van de Mark D. P., Richardson J. B., Yablonka-Reuveni Z. (2006). Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev. Biol. 294, 50–66. 10.1016/j.ydbio.2006.02.022
    1. Siciliano G., Mancuso M., Tedeschi D., Manca M. L., Renna M. R., Lombardi V., et al. . (2001). Coenzyme Q10, exercise lactate and CTG trinucleotide expansion in myotonic dystrophy. Brain Res. Bull. 56, 405–410. 10.1016/s0361-9230(01)00653-0
    1. Sistiaga A., Urreta I., Jodar M., Cobo A. M., Emparanza J., Otaegui D., et al. . (2010). Cognitive/personality pattern and triplet expansion size in adult myotonic dystrophy type 1 (DM1): CTG repeats, cognition and personality in DM1. Psychol. Med. 40, 487–495. 10.1017/s0033291709990602
    1. Soskić V., Groebe K., Schrattenholz A. (2008). Nonenzymatic posttranslational protein modifications in ageing. Exp. Gerontol. 43, 247–257. 10.1016/j.exger.2007.12.001
    1. Sousa-Victor P., Gutarra S., García-Prat L., Rodriguez-Ubreva J., Ortet L., Ruiz-Bonilla V., et al. . (2014). Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316–321. 10.1038/nature13013
    1. Subramanian J., Vijayakumar S., Tomkinson A. E., Arnheim N. (2005). Genetic instability induced by overexpression of DNA ligase I in budding yeast. Genetics 171, 427–441. 10.1534/genetics.105.042861
    1. Sugiyama Y., Suzuki A., Kishikawa M., Akutsu R., Hirose T., Waye M. M., et al. . (2000). Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. J. Biol. Chem. 275, 1095–1104. 10.1074/jbc.275.2.1095
    1. Suzuki A., Sugiyama Y., Hayashi Y., Nyu-i N., Yoshida M., Nonaka I., et al. . (1998). MKBP, a novel member of the small heat shock protein family, binds and activates the myotonic dystrophy protein kinase. J. Cell Biol. 140, 1113–1124. 10.1083/jcb.140.5.1113
    1. Tang B., Cai J., Sun L., Li Y., Qu J., Snider B. J., et al. . (2014). Proteasome inhibitors activate autophagy involving inhibition of PI3K-Akt-mTOR pathway as an anti-oxidation defense in human RPE cells. PLoS One 9:e103364. 10.1371/journal.pone.0103364
    1. Tebbs R. S., Flannery M. L., Meneses J. J., Hartmann A., Tucker J. D., Thompson L. H., et al. . (1999). Requirement for the Xrcc1 DNA base excision repair gene during early mouse development. Dev. Biol. 208, 513–529. 10.1006/dbio.1999.9232
    1. Tedeschi D., Lombardi V., Mancuso M., Martelli F., Sighieri C., Rocchi A., et al. . (2000). Potential involvement of ubiquinone in myotonic dystrophy pathophysiology: new diagnostic approaches for new rationale therapeutics. Neurol. Sci. 21, S979–S980. 10.1007/s100720070014
    1. Thornell L. E., Lindstöm M., Renault V., Klein A., Mouly V., Ansved T., et al. . (2009). Satellite cell dysfunction contributes to the progressive muscle atrophy in myotonic dystrophy type 1. Neuropathol. Appl. Neurobiol. 35, 603–613. 10.1111/j.1365-2990.2009.01014.x
    1. Thornton C. A., Johnson K., Moxley R. T., III (1994). Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann. Neurol. 35, 104–107. 10.1002/ana.410350116
    1. Thornton C. A., Wymer J. P., Simmons Z., McClain C., Moxley R. T., III (1997). Expansion of the myotonic dystrophy CTG repeat reduces expression of the flanking DMAHP gene. Nat. Genet. 16, 407–409. 10.1038/ng0897-407
    1. Tian B., White R. J., Xia T., Welle S., Turner D. H., Mathews M. B., et al. . (2000). Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR. RNA 6, 79–87. 10.1017/s1355838200991544
    1. Timchenko N. A., Iakova P., Cai Z. J., Smith J. R., Timchenko L. T. (2001). Molecular basis for impaired muscle differentiation in myotonic dystrophy. Mol. Cell. Biol. 21, 6927–6938. 10.1128/mcb.21.20.6927-6938.2001
    1. Tokgozoglu L. S., Ashizawa T., Pacifico A., Armstrong R. M., Epstein H. F., Zoghbi W. A. (1995). Cardiac involvement in a large kindred with myotonic dystrophy. Quantitative assessment and relation to size of CTG repeat expansion. JAMA 274, 813–819. 10.1001/jama.1995.03530100053034
    1. Tomaru U., Takahashi S., Ishizu A., Miyatake Y., Gohda A., Suzuki S., et al. . (2012). Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. Am. J. Pathol. 180, 963–972. 10.1016/j.ajpath.2011.11.012
    1. Udd B., Krahe R. (2012). The myotonic dystrophies: molecular, clinical and therapeutic challenges. Lancet Neurol 11, 891–905. 10.1016/s1474-4422(12)70204-1
    1. Ueda H., Shimokawa M., Yamamoto M., Kameda N., Mizusawa H., Baba T., et al. . (1999). Decreased expression of myotonic dystrophy protein kinase and disorganization of sarcoplasmic reticulum in skeletal muscle of myotonic dystrophy. J. Neurol. Sci. 162, 38–50. 10.1016/s0022-510x(98)00290-1
    1. Urciuolo A., Quarta M., Morbidoni V., Gattazzo F., Molon S., Grumati P., et al. . (2013). Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat. Commun. 4:1964. 10.1038/ncomms2964
    1. Vahidi Ferdousi L., Rocheteau P., Chayot R., Montagne B., Chaker Z., Flamant P., et al. . (2014). More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny. Stem Cell Res. 13, 492–507. 10.1016/j.scr.2014.08.005
    1. Valente L., Tiranti V., Marsano R. M., Malfatti E., Fernandez-Vizarra E., Donnini C., et al. . (2007). Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. Am. J. Hum. Genet. 80, 44–58. 10.1086/510559
    1. van den Broek W. J., Nelen M. R., Wansink D. G., Coerwinkel M. M., te Riele H., Groenen P. J., et al. . (2002). Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum. Mol. Genet. 11, 191–198. 10.1093/hmg/11.2.191
    1. van Herpen R. E., Oude Ophuis R. J., Wijers M., Bennink M. B., van de Loo F. A., Fransen J., et al. . (2005). Divergent mitochondrial and endoplasmic reticulum association of DMPK splice isoforms depends on unique sequence arrangements in tail anchors. Mol. Cell. Biol. 25, 1402–1414. 10.1128/mcb.25.4.1402-1414.2005
    1. Vattemi G., Tomelleri G., Filosto M., Savio C., Rizzuto N., Tonin P. (2005). Expression of late myogenic differentiation markers in sarcoplasmic masses of patients with myotonic dystrophy. Neuropathol. Appl. Neurobiol. 31, 45–52. 10.1111/j.1365-2990.2004.00602.x
    1. Vaziri H., Dragowska W., Allsopp R. C., Thomas T. E., Harley C. B., Lansdorp P. M. (1994). Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc. Natl. Acad. Sci. U S A 91, 9857–9860. 10.1073/pnas.91.21.9857
    1. Verpoest W., De Rademaeker M., Sermon K., De Rycke M., Seneca S., Papanikolaou E., et al. . (2008). Real and expected delivery rates of patients with myotonic dystrophy undergoing intracytoplasmic sperm injection and preimplantation genetic diagnosis. Hum. Reprod. 23, 1654–1660. 10.1093/humrep/den105
    1. Verpoest W., Seneca S., De Rademaeker M., Sermon K., De Rycke M., De Vos M., et al. . (2010). The reproductive outcome of female patients with myotonic dystrophy type 1 (DM1) undergoing PGD is not affected by the size of the expanded CTG repeat tract. J. Assist. Reprod. Genet. 27, 327–333. 10.1007/s10815-010-9392-9
    1. Vignaud A., Ferry A., Huguet A., Baraibar M., Trollet C., Hyzewicz J., et al. . (2010). Progressive skeletal muscle weakness in transgenic mice expressing CTG expansions is associated with the activation of the ubiquitin-proteasome pathway. Neuromuscul. Disord. 20, 319–325. 10.1016/j.nmd.2010.03.006
    1. Vihola A., Bachinski L. L., Sirito M., Olufemi S. E., Hajibashi S., Baggerly K. A., et al. . (2010). Differences in aberrant expression and splicing of sarcomeric proteins in the myotonic dystrophies DM1 and DM2. Acta Neuropathol. 119, 465–479. 10.1007/s00401-010-0637-6
    1. Vihola A., Bassez G., Meola G., Zhang S., Haapasalo H., Paetau A., et al. . (2003). Histopathological differences of myotonic dystrophy type 1 (DM1) and PROMM/DM2. Neurology 60, 1854–1857. 10.1212/01.wnl.0000065898.61358.09
    1. Vilchez D., Simic M. S., Dillin A. (2014). Proteostasis and aging of stem cells. Trends Cell Biol. 24, 161–170. 10.1016/j.tcb.2013.09.002
    1. Volle C. B., Delaney S. (2012). CAG/CTG repeats alter the affinity for the histone core and the positioning of DNA in the nucleosome. Biochemistry 51, 9814–9825. 10.1021/bi301416v
    1. Wakimoto H., Maguire C. T., Sherwood M. C., Vargas M. M., Sarkar P. S., Han J., et al. . (2002). Characterization of cardiac conduction system abnormalities in mice with targeted disruption of Six5 gene. J. Interv. Card. Electrophysiol. 7, 127–135. 10.1023/A:1020881520353
    1. Wang Y. H., Amirhaeri S., Kang S., Wells R. D., Griffith J. D. (1994). Preferential nucleosome assembly at DNA triplet repeats from the myotonic dystrophy gene. Science 265, 669–671. 10.1126/science.8036515
    1. Westerlaken J. H., Van der Zee C. E., Peters W., Wieringa B. (2003). The DMWD protein from the myotonic dystrophy (DM1) gene region is developmentally regulated and is present most prominently in synapse-dense brain areas. Brain Res. 971, 116–127. 10.1016/s0006-8993(03)02430-2
    1. Xanthoudakis S., Smeyne R. J., Wallace J. D., Curran T. (1996). The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc. Natl. Acad. Sci. U S A 93, 8919–8923. 10.1073/pnas.93.17.8919
    1. Yin H., Price F., Rudnicki M. A. (2013). Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67. 10.1152/physrev.00043.2011

Source: PubMed

3
Prenumerera