Is There a Role for SARS-CoV-2/COVID-19 on the Female Reproductive System?

Silvia D'Ippolito, Francesca Turchiano, Amerigo Vitagliano, Gennaro Scutiero, Antonio Lanzone, Giovanni Scambia, Pantaleo Greco, Silvia D'Ippolito, Francesca Turchiano, Amerigo Vitagliano, Gennaro Scutiero, Antonio Lanzone, Giovanni Scambia, Pantaleo Greco

Abstract

Coronavirus disease (COVID-19) has emerged as a very serious pandemic caused by the rapidly evolving transmission of the coronavirus SARS-CoV-2. Since its outbreak in 2020, the SARS CoV-2 has represented an important challenge for the physicians due to its well known respiratory sequelae. To date, the role of SARS-CoV-2 infection on organs and systems other than lungs and respiratory tract remains less clear. In particular, it remains to be investigated whether the reproductive system can be affected by the SARS-CoV-2 in the long term-period or, in alternative, drugs used to treat COVID-19 might impact the reproductive systems and, in turn, fertility. What is known is that SARS-Cov-2 binds to target cells of host through different receptors including angiotensin-converting enzyme 2 (ACE2), neuropilin-1, AXL and antibody-FcɣR complexes. ACE2 physiologically regulates both the expression of angiotensin II (Ang II) as well as Ang-(1-7) to exerts its physiological functions. The reproductive system abundantly expresses ACE2 and produces Ang-(1-7), starting from precursors which are locally generated or derived from systemic circulation. Ang-(1-7) plays an important role of stimulus to the growth and maturation of ovarian follicle as well as to ovulation. Also human endometrium expresses Ang-(1-7), mainly during the post-ovulatory phase. Animal and human observational studies demonstrated that Ang-(1-7) is involved in the maternal immune response to pregnancy and its deficiency is associated with a defective placenta development. In our manuscript, we review the current knowledge about whether SARS-CoV-2 may impact the female reproductive system. We further explain the possible molecular mechanism by which SARS-CoV-2 might affect ovarian, endometrial and female genital tract cells.

Keywords: Coronavirus disease (COVID-19); SARS-CoV-2; SARS-CoV-2 colonization; female fertility; pregnancy.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 D’Ippolito, Turchiano, Vitagliano, Scutiero, Lanzone, Scambia and Greco.

Figures

FIGURE 1
FIGURE 1
Human coronaviruses (HCoVs) comparison of RNA Features, Receptor, Receptor binding sites, Timeline. To date, seven human coronaviruses (HCoVs) have been detected: HCoV-229E, HCoV-NL63, HCoV-HKU1, HCoV-OC43, severe acute respiratory syndrome coronavirus (SARS-CoV*), Middle East respiratory syndrome coronavirus (MERS-CoV**) and SARS-CoV-2***. Four of these viruses, including HCoV-229E, -NL63, -HKU1, and -OC43, usually cause mild-to-moderate respiratory diseases with a seasonal pattern. Three new HCoVs have recently emerged with a significant mortality rate. Despite the fact that all HCoVs share similarities in viral replication, they differ in their accessory proteins, incubation period and pathogenicity (Modified by Kesheh et al., 2021).
FIGURE 2
FIGURE 2
Epidemics Human Coronaviruses (HCoVs) structure of genome. The genomes of epidemics Human CoVs contain a single-stranded, positive-sense RNA ranging of 27–32 kb in size. One third of the genome, expressed at the 3′ terminal, encodes the main proteins of the virus involved in the virus-cell receptor binding and virion activity. In particular, four structural proteins: E: envelope protein, M: membrane protein, N: nucleocapsid protein, S: spike protein. The S protein of HCoVs consists of two subunits, S1 and S2. S1 subunit consist of a C-Terminal Domain (CTD) – also named Receptor Binding Domain (RBD) – and a N-Terminal Domain (NTD). S2 subunit contains a fusion peptide (FP), transmembrane domain (TM) region, heptad repeat 1-2 (HR1, HR2). SP, signal peptide; CP, cytoplasmic peptide; ORF, open reading frame (Modified by Zhao et al., 2020b).

References

    1. Abhari S., Kawwass J. F. (2020). Endometrial susceptibility to SARS CoV-2: explained by gene expression across the menstrual cycle? Fertil. Steril. 114 255–256. 10.1016/j.fertnstert.2020.06.046
    1. Ackermann M., Verleden S. E., Kuehnel M., Haverich A., Welte T., Laenger F., et al. (2020). Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 383 120–128. 10.1056/NEJMoa2015432
    1. Allotey J., Stallings E., Bonet M., Yap M., Chatterjee S., Kew T., et al. (2020). Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ 370:m3320. 10.1136/bmj.m3320
    1. Aslan M. M., Uslu Yuvacı H., Köse O., Toptan H., Akdemir N., Köroğlu M., et al. (2020). SARS-CoV-2 is not present in the vaginal fluid of pregnant women with COVID-19. J. Matern. Fetal. Neonatal. Med. 16 1–3. 10.1080/14767058.2020.1793318
    1. Atzrodt C. L., Maknojia I., McCarthy R. D. P., Oldfield T. M., Po J., Ta K. T. L., et al. (2020). A Guide to COVID-19: a global pandemic caused by the novel coronavirus SARS-CoV-2. FEBS J. 287 3633–3650. 10.1111/febs.15375
    1. Bourgonje A. R., Abdulle A. E., Timens W., Hillebrands J. L., Navis G. J., Gordijn S. J., et al. (2020). Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol. 251 228–248. 10.1002/path.5471
    1. Carosso A. R., Cosma S., Benedetto C. (2020). Vaginal delivery in COVID-19 pregnant women: anorectum as a potential alternative route of SARS-CoV-2 transmission. Am. J. Obstet. Gynecol. 223:612. 10.1016/j.ajog.2020.06.012
    1. Cavallo I. K., Dela Cruz C., Oliveira M. L., et al. (2017). Angiotensin-(1-7) in human follicular fluid correlates with oocyte maturation. Hum. Reprod. 32 1318–1324. 10.1093/humrep/dex072
    1. Cheng V. C. C., Lau S. K. P., Woo P. C. Y., Yuen K. Y. (2007). Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 20 660–694. 10.1128/CMR.00023-07
    1. Cui P., Chen Z., Wang T., Dai J., Zhang J., et al. (2020). Severe acute respiratory syndrome coronavirus 2 detection in the female lower genital tract. Am. J. Obstet. Gynecol. 223 131–134. 10.1016/j.ajog.2020.04.038
    1. Dashraath P., Wong J. L. J., Lim M. X. K., Lim L. M., Li S., Biswas A., et al. (2020). Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am. J. Obstet. Gynecol. 222 521–531. 10.1016/j.ajog.2020.03.021
    1. Di Mascio D., Khalil A., Saccone G., Rizzo G., Buca D., Liberati M., et al. (2020). Outcome of coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM 2:100107. 10.1016/j.ajogmf.2020.100107
    1. D’Ippolito S., Tersigni C., Marana R., Di Nicuolo F., Gaglione R., Rossi E. D., et al. (2016). Inflammosome in the human endometrium: further step in the evaluation of the “maternal side”. Fertil. Steril. 105 111–8.e1–4. 10.1016/j.fertnstert.2015.09.027
    1. Edlow A. G., Li J. Z., Collier A. Y., Atyeo C., James K. E., Boatin A. A., et al. (2020). Assessment of Maternal and Neonatal SARS-CoV-2 Viral Load, Transplacental Antibody Transfer, and Placental Pathology in Pregnancies During the COVID-19 Pandemic. JAMA Netw. Open 3:e2030455. 10.1001/jamanetworkopen.2020.30455
    1. Fu J., Zhou B., Zhang L., Balaji K. S., Wei C., Liu X., et al. (2020). Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Mol.Biol. Rep. 47 4383–4392. 10.1007/s11033-020-05478-4
    1. García L. F. (2020). Immune Response, Inflammation, and the Clinical Spectrum of COVID-19 Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front. Immunol. 11:1441. 10.3389/fimmu.2020.01441
    1. Ghadhanfar E., Alsalem A., Al-Kandari S., Naser J., Babiker F., Al-Bader M. (2017). The role of ACE2, angiotensin-(1-7) and Mas1 receptor axis in glucocorticoid-induced intrauterine growth restriction. Reprod. Biol. Endocrinol. 15:97. 10.1186/s12958-017-0316-8
    1. Henarejos-Castillo I., Sebastian-Leon P., Devesa-Peiro A., Pellicer A., Diaz-Gimeno P. (2020). SARS-CoV-2 infection risk assessment in the endometrium: viral infection-related gene expression across the menstrual cycle. Fertil. Steril. 114 223–232. 10.1016/j.fertnstert.2020.06.026
    1. Herr D., Bekes I., Wulff C. (2013). Local renin-angiotensin system in the reproductive system. Front. Endocrinol. 4:150. 10.3389/fendo.2013.00150
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., et al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181 271–280.e8.
    1. Hu B., Guo H., Zhou P., Zheng-Li Shi. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19 141–154. 10.1038/s41579-020-00459-7
    1. Juan J., Gil M. M., Rong Z., Zhang Y., Yang H., et al. (2020). Effect of coronavirus disease 2019 (COVID-19) on maternal, perinatal and neonatal outcome: systematic review. Ultrasound. Obstet. Gynecol. 56 15–27. 10.1002/uog.22088
    1. Kesheh M. M., Hosseini P., Soltani S., Zandi M. (2021). An overview on the seven pathogenic human coronaviruses. Rev. Med. Virol. 2:e2282. 10.1002/rmv.2282
    1. Khalil A., Kalafat E., Benlioglu C., O’Brien P., Morris E., Draycott T., et al. (2020). SARS-CoV-2 infection in pregnancy: a systematic review and meta-analysis of clinical features and pregnancy outcomes. EClinicalMedicine 25:100446. 10.1016/j.eclinm.2020.100446
    1. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., et al. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 11 875–879. 10.1038/nm1267
    1. Lee S., Channappanavar R., Kanneganti T. D. (2020). Coronaviruses: innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Trends. Immunol. 41 1083–1099. 10.1016/j.it.2020.10.005
    1. Lee W. Y., Mok A., Chung J. P. W. (2021). Potential effects of COVID-19 on reproductive systems and fertility; assisted reproductive technology guidelines and considerations: a review. Hong. Kong. Med. J. 27 118–126. 10.12809/hkmj209078
    1. Levy A., Yagil Y., Bursztyn M., Barkalifa R., Scharf S., Yagil C. (2008). ACE2 expression and activity are enhanced during pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295 R1953–R1961. 10.1152/ajpregu.90592.2008
    1. Lumbers E. R., Delforce S. J., Arthurs A. L., Pringle K. G. (2019). Causes and Consequences of the Dysregulated Maternal Renin-Angiotensin System in Preeclampsia. Front. Endocrinol. 10:563. 10.3389/fendo.2019.00563
    1. Madjid M., Safavi-Naeini P., Solomon S. D., Vardeny O. (2020). Potential Effects of Coronaviruses on the Cardiovascular System: a Review. JAMA Cardiol. 5 831–840. 10.1001/jamacardio.2020.1286
    1. Man S. M., Karki R., Kanneganti T. D. (2017). Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev. 277 61–75. 10.1111/imr.12534
    1. Markiewicz-Gospodarek A., Wdowiak P., Czeczelewski M., Forma A., Flieger J., Januszewski J., et al. (2021). The Impact of SARS-CoV-2 Infection on Fertility and Female and Male Reproductive Systems. J. Clin. Med. 10:4520. 10.3390/jcm10194520
    1. Pan P. P., Zhan Q. T., Le F., Zheng Y. M., Jin F. (2013). Angiotensin converting enzymes play a dominant role in fertility. Int. J. Mol. Sci. 14 21071–21086. 10.3390/ijms141021071
    1. Pivonello R., Auriemma R. S., Pivonello C., Isidori A. M., Corona G., Colao A., et al. (2021). Sex Disparities in COVID-19 Severity and Outcome: Are Men Weaker or Women Stronger? Neuroendocrinology 111 1066–1085. 10.1159/000513346
    1. Qi J., Zhou Y., Hua J., Zhang L., Bian J., Liu B. (2020). The scRNA-seq expression profiling of the receptor ACE2 and the cellular protease TMPRSS2 reveals human organs susceptible to COVID-19 infection. United States: Cold Spring Harbor Laboratory Press. 10.1101/2020.04.16.045690v1
    1. Qiu L., Liu X., Xiao M., Xie J., Cao W., Liu Z., et al. (2020). SARS-CoV-2 is not detectable in the vaginal fluid of women with severe COVID-19 infection. Clin. Infect. Dis. 71 813–817. 10.1093/cid/ciaa375
    1. Raza H. A., Sen P., Bhatti O. A., Gupta L. (2021). Sex hormones, autoimmunity and gender disparity in COVID-19. Rheumatol. Int. 41 1375–1386. 10.1007/s00296-021-04873-9
    1. Sandall C. F., Ziehr B. K., MacDonald J. A. (2020). ATP-Binding and Hydrolysis in Inflammasome Activation. Molecules 25:4572. 10.3390/molecules25194572
    1. Schwartz A., Yogev Y., Zilberman A., Alpern S., Many A., Yousovich R., et al. (2021). Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vaginal swabs of women with acute SARS-CoV-2 infection: a prospective study. BJOG 128 97–100. 10.1111/1471-0528.16556
    1. Schwartz D. A. (2020b). An Analysis of 38 Pregnant Women With COVID-19, Their Newborn Infants, and Maternal-Fetal Transmission of SARS-CoV-2: maternal Coronavirus Infections and Pregnancy Outcomes. Arch. Pathol. Lab. Med. 144 799–805. 10.5858/arpa.2020-0901-SA
    1. Schwartz D. A., Morotti D. (2020a). Placental Pathology of COVID-19 with and without Fetal and Neonatal Infection: trophoblast Necrosis and Chronic Histiocytic Intervillositis as Risk Factors for Transplacental Transmission of SARS-CoV-2. Viruses 12:1308. 10.3390/v12111308
    1. Selek A., Güçlü M., Bolu Ş. E. (2021). COVID-19 pandemic: what about the gonads? Hormones 20 259–268. 10.1007/s42000-021-00277-3
    1. Stanley K. E., Thomas E., Leaver M., Wells D. (2020). Coronavirus disease-19 and fertility: viral host entry protein expression in male and female reproductive tissues. Fertil Steril. 114 33–43. 10.1016/j.fertnstert.2020.05.001
    1. Sungnak W., Huang N., Bécavin C., Berg M., Queen R., Litvinukova M., et al. (2020a). HCA Lung Biological Network SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26 681–687. 10.1038/s41591-020-0868-6
    1. Sungnak W., Huang N., Bécavin C., Berg M., Network H. L. B. (2020b). SARS-CoV-2 entry genes are most highly expressed in nasal goblet and ciliated cells within human airways. ArXiv 13:arXiv:2003.06122v1.
    1. Traish A. M. (2021). Sex steroids and COVID-19 mortality in women. Trends. Endocrinol. Metab. 32 533–536. 10.1016/j.tem.2021.04.006
    1. Verdecchia P., Cavallini C., Spanevello A., Angeli F. (2020). The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med. 76 14–20. 10.1016/j.ejim.2020.04.037
    1. Vinson G. P., Saridogan E., Puddefoot J. R., Djahanbakhch O. (1997). Tissue renin-angiotensin systems and reproduction. Hum. Reprod. 12 651–662. 10.1093/humrep/12.4.651
    1. Vivanti A. J., Vauloup-Fellous C., Prevot S., Zupan V., Suffee C., Do Cao J., et al. (2020). Transplacental transmission of SARS-CoV-2 infection. Nat. Commun. 11:3572. 10.1038/s41467-020-17436-6
    1. Wiersinga W. J., Rhodes A., Cheng A. C., Peacock S. J., Prescott H. C. (2020). Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): a Review. JAMA 324 782–793. 10.1001/jama.2020.12839
    1. Yan J., Li R. Q., Wang H. R., Hao-Ran C., Ya-Bin L., Yang G., et al. (2020). Potential influence of COVID-19/ACE2 on the female reproductive system. Mol. Hum. Reprod. 26 367–373. 10.1093/molehr/gaaa030
    1. Zeng L., Xia S., Yuan W., Yan K., Xiao F., Shao J., et al. (2020). Neonatal Early-Onset Infection With SARS-CoV-2 in 33 Neonates Born to Mothers With COVID-19 in Wuhan, China. JAMA Pediatr. 174 722–725. 10.1001/jamapediatrics.2020.0878
    1. Zhang Q., Xiang R., Huo S., Zhou Y., Jiang S., Wang Q., et al. (2021). Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther. 6:233. 10.1038/s41392-021-00653-w
    1. Zhao C., Zhao W. (2020a). NLRP3 Inflammasome-A Key Player in Antiviral Responses. Front Immunol. 11:211. 10.3389/fimmu.2020.00211
    1. Zhao X., Ding Y., Du J., Fan Y. (2020b). 2020 update on human coronaviruses: one health, one world. Med. Nov. Technol. Devices 8:100043. 10.1016/j.medntd.2020.100043

Source: PubMed

3
Prenumerera