End-organ saturations correlate with aortic blood flow estimates by echocardiography in the extremely premature newborn - an observational cohort study

Gabriel Altit, Shazia Bhombal, Valerie Y Chock, Gabriel Altit, Shazia Bhombal, Valerie Y Chock

Abstract

Background: Near-infrared spectroscopy (NIRS) measures of cerebral saturation (Csat) and renal saturation (Rsat) in extreme premature newborns may be affected by systemic blood flow fluctuations. Despite increasing clinical use of NIRS to monitor tissue saturation in the premature infant, validation of NIRS measures as a correlate of blood flow is still needed. We compared echocardiography (ECHO) derived markers of ascending aorta (AscAo) and descending aorta (DesAo) blood flow with NIRS measurements obtained during the ECHO.

Methods: Newborns < 29 weeks' gestation (2013-2017) underwent routine NIRS monitoring. Csat, Rsat and systemic saturation at the time of ECHO were retrospectively analyzed and compared with Doppler markers of aortic flow. Renal and cerebral fractional tissue oxygen extraction (rFTOE and cFTOE, respectively) were calculated. Mixed effects models evaluated the association between NIRS and Doppler markers.

Results: Forty-nine neonates with 75 Csat-ECHO and 62 Rsat-ECHO observations were studied. Mean post-menstrual age was 28.3 ± 3.8 weeks during the ECHO. Preductal measures including AscAo velocity time integral (VTI) and AscAo output were correlated with Csat or cFTOE, while postductal measures including DesAo VTI, DesAo peak systolic velocity, and estimated DesAo output were more closely correlated with Rsat or rFTOE.

Conclusions: NIRS measures are associated with aortic blood flow measurements by ECHO in the extremely premature population. NIRS is a tool to consider when following end organ perfusion in the preterm infant.

Trial registration: ClinicalTrials.gov NCT04106479.

Keywords: Echocardiography, aortic blood flow; Extreme prematurity; Near infrared spectroscopy; Regional saturation.

Conflict of interest statement

Gabriel Altit obtained a material grant (consisting of NIRS monitors and sensors) by Medtronic via their peer-review grant program for a study for which he is the principal investigator (

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Pulse-wave Doppler envelopes in the Aorta. Legend: Peak systolic velocity and velocity time integral of the spectral envelope obtained by pulse-wave Doppler at various level in the Aorta. Panel a: Ascending aorta in the suprasternal view; b: Descending Aorta in the subcostal view (retrograde flow in diastole); c Post-ductal descending aorta in the suprasternal view (anterograde flow in diastole); d Post-ductal descending aorta in the suprasternal view (retrograde flow in diastole)
Fig. 2
Fig. 2
Unadjusted Linear Regression with descending aorta VTI in suprasternal view. Legend: Unadjusted linear regression indicating a correlation between Rsat and rFTOE with post-ductal descending Aortic VTI, as well as with Csat and cFTOE

References

    1. Broadhouse KM, Price AN, Durighel G, Cox DJ, Finnemore AE, Edwards AD, Hajnal JV, Groves AM. Assessment of PDA shunt and systemic blood flow in newborns using cardiac MRI. NMR Biomed. 2013;26(9):1135–1141. doi: 10.1002/nbm.2927.
    1. Pellicer A, Bravo Mdel C. Near-infrared spectroscopy: a methodology-focused review. Semin Fetal Neonatal Med. 2011;16(1):42–9. 10.1016/j.siny.2010.05.003. Epub 2010 Jun 26.
    1. Chock VY, Davis AS. Bedside cerebral monitoring to predict neurodevelopmental outcomes. NeoReviews. 2009;10(3):e121–e129. doi: 10.1542/neo.10-3-e121.
    1. Bailey SM, Hendricks-Munoz KD, Mally P. Cerebral, renal, and splanchnic tissue oxygen saturation values in healthy term newborns. Am J Perinatol. 2014;31(04):339–344.
    1. Naulaers G, Meyns B, Miserez M, Leunens V, Van Huffel S, Casaer P, Weindling M, Devlieger H. Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. Neonatology. 2007;92(2):120–126. doi: 10.1159/000101063.
    1. Tsuji M, Saul JP, du Plessis A, Eichenwald E, Sobh J, Crocker R, Volpe JJ. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics. 2000;106(4):625–632. doi: 10.1542/peds.106.4.625.
    1. Katheria AC, Harbert MJ, Nagaraj SB, Arnell K, Poeltler DM, Brown MK, Rich W, Hassen KO, Finer N. The Neu-Prem Trial: Neuromonitoring of Brains of Infants Born Preterm During Resuscitation-A Prospective Observational Cohort Study. J Pediatr. 2018;198:209–213. doi: 10.1016/j.jpeds.2018.02.065.
    1. Chock VY, Kwon SH, Ambalavanan N, Batton B, Nelin LD, Chalak LF, Tian L, Van Meurs KP. Cerebral oxygenation and autoregulation in preterm infants (early NIRS study) J Pediatr. 2020;227:94–100.e1. doi: 10.1016/j.jpeds.2020.08.036.
    1. Altit G, Bhombal S, Tacy TA, Chock VY. End-organ saturation differences in early neonatal transition for left-versus right-sided congenital heart disease. Neonatology. 2018;114(1):53–61. doi: 10.1159/000487472.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Chock VY, Rose LA, Mante JV, Punn R. Near-infrared spectroscopy for detection of a significant patent ductus arteriosus. Pediatr Res. 2016;80(5):675–680. doi: 10.1038/pr.2016.148.
    1. Altit G, Bhombal S, Feinstein J, Hopper RK, Tacy TA. Diminished right ventricular function at diagnosis of pulmonary hypertension is associated with mortality in bronchopulmonary dysplasia. Pulmon Circ. 2019;9(3):2045894019878598. doi: 10.1177/2045894019878598.
    1. Lai WW, Geva T, Shirali GS, Frommelt PC, Humes RA, Brook MM, Pignatelli RH, Rychik J, Committee W. Guidelines and standards for performance of a pediatric echocardiogram: a report from the task force of the pediatric Council of the American Society of echocardiography. J Am Soc Echocardiogr. 2006;19(12):1413–1430. doi: 10.1016/j.echo.2006.09.001.
    1. Punn R, Axelrod DM, Sherman-Levine S, Roth SJ, Tacy TA. Predictors of mortality in pediatric patients on venoarterial extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2014;15(9):870–877. doi: 10.1097/PCC.0000000000000236.
    1. Kim KM, Kim HS, Yoon JH, Lee E-J, Yum SK, Moon C-J, Youn Y-A, Kwun YJ, Lee JY, Sung IK. Descending aorta blood flow characteristics before the development of necrotizing enterocolitis in preterm neonates. Neonatal Med. 2018;25(2):78–84. doi: 10.5385/nm.2018.25.2.78.
    1. Alverson DC, Eldridge MW, Johnson JD, Burstein R, Papile L, Dillon T, Yabek S, Berman W., Jr Effect of patent ductus arteriosus on left ventricular output in premature infants. J Pediatr. 1983;102(5):754–757. doi: 10.1016/S0022-3476(83)80252-2.
    1. Janaillac M, Beausoleil TP, Barrington KJ, Raboisson MJ, Karam O, Dehaes M, Lapointe A. Correlations between near-infrared spectroscopy, perfusion index, and cardiac outputs in extremely preterm infants in the first 72 h of life. Eur J Pediatr. 2018;177(4):541–550. doi: 10.1007/s00431-018-3096-z.
    1. Camfferman FA, de Goederen R, Govaert P, Dudink J, van Bel F, Pellicer A, Cools F. Diagnostic and predictive value of Doppler ultrasound for evaluation of the brain circulation in preterm infants: a systematic review. Pediatr Res. 2020;87(Suppl 1):50–58. doi: 10.1038/s41390-020-0777-x.
    1. de Waal KA. The methodology of Doppler-derived central blood flow measurements in newborn infants. Int J Pediatr. 2012;2012:680162.
    1. Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC, Horton K, Ogunyankin KO, Palma RA, Velazquez EJ. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(1):1–64. doi: 10.1016/j.echo.2018.06.004.
    1. Hatle L. Assessment of aortic blood flow velocities with continuous wave Doppler ultrasound in the neonate and young child. J Am Coll Cardiol. 1985;5(1 Suppl):113s–119s. doi: 10.1016/S0735-1097(85)80152-2.
    1. Pees C, Glagau E, Hauser J, Michel-Behnke I. Reference values of aortic flow velocity integral in 1193 healthy infants, children, and adolescents to quickly estimate cardiac stroke volume. Pediatr Cardiol. 2013;34(5):1194–1200. doi: 10.1007/s00246-012-0628-6.
    1. Blanco P. Rationale for using the velocity-time integral and the minute distance for assessing the stroke volume and cardiac output in point-of-care settings. Ultrasound J. 2020;12(1):21. doi: 10.1186/s13089-020-00170-x.
    1. Altit G, Bhombal S, Chock VY, Tacy TA. Immediate postnatal ventricular performance is associated with mortality in Hypoplastic left heart syndrome. Pediatr Cardiol. 2019;40(1):168–176. doi: 10.1007/s00246-018-1974-9.
    1. Tan C, Rubenson D, Srivastava A, Mohan R, Smith MR, Billick K, Bardarian S, Thomas Heywood J. Left ventricular outflow tract velocity time integral outperforms ejection fraction and Doppler-derived cardiac output for predicting outcomes in a select advanced heart failure cohort. Cardiovasc Ultrasound. 2017;15(1):18. doi: 10.1186/s12947-017-0109-4.
    1. Groves AM, Kuschel CA, Knight DB, Skinner J. Echocardiographic assessment of blood flow volume in the superior vena cava and descending aorta in the newborn infant. Arch Dis Child Fetal Neonatal Ed. 2008;93(1):F24–F28. doi: 10.1136/adc.2006.109512.
    1. Gale C. Question 2. Is capillary refill time a useful marker of haemodynamic status in neonates? Arch Dis Child. 2010;95(5):395–397. doi: 10.1136/adc.2010.186411.
    1. Groves AM, Kuschel CA, Knight DB, Skinner JR. Relationship between blood pressure and blood flow in newborn preterm infants. Arch Dis Child Fetal Neonatal Ed. 2008;93(1):F29–F32. doi: 10.1136/adc.2006.109520.
    1. El-Khuffash A, McNamara PJ. Hemodynamic assessment and monitoring of premature infants. Clin Perinatol. 2017;44(2):377–393. doi: 10.1016/j.clp.2017.02.001.
    1. Rios DR, Bhattacharya S, Levy PT, McNamara PJ. Circulatory insufficiency and hypotension related to the ductus arteriosus in neonates. Front Pediatr. 2018;6:62. doi: 10.3389/fped.2018.00062.
    1. Ortmann LA, Fontenot EE, Seib PM, Eble BK, Brown R, Bhutta AT. Use of near-infrared spectroscopy for estimation of renal oxygenation in children with heart disease. Pediatr Cardiol. 2011;32(6):748–753. doi: 10.1007/s00246-011-9960-5.
    1. Vidal E, Amigoni A, Brugnolaro V, Ghirardo G, Gamba P, Pettenazzo A, Zanon GF, Cosma C, Plebani M, Murer L. Near-infrared spectroscopy as continuous real-time monitoring for kidney graft perfusion. Pediatr Nephrol. 2014;29(5):909–914. doi: 10.1007/s00467-013-2698-y.
    1. Elsayed Y, Amer R, Seshia M. The impact of integrated evaluation of hemodynamics using targeted neonatal echocardiography with indices of tissue oxygenation: a new approach. J Perinatol. 2017;37(5):527–535. doi: 10.1038/jp.2016.257.
    1. Dani C, Pratesi S, Fontanelli G, Barp J, Bertini G. Blood transfusions increase cerebral, splanchnic, and renal oxygenation in anemic preterm infants. Transfusion. 2010;50(6):1220–1226. doi: 10.1111/j.1537-2995.2009.02575.x.
    1. Underwood MA, Milstein JM, Sherman MP. Near-infrared spectroscopy as a screening tool for patent ductus arteriosus in extremely low birth weight infants. Neonatology. 2007;91(2):134–139. doi: 10.1159/000097131.
    1. Petrova A, Bhatt M, Mehta R. Regional tissue oxygenation in preterm born infants in association with echocardiographically significant patent ductus arteriosus. J Perinatol. 2011;31(7):460–464. doi: 10.1038/jp.2010.200.
    1. Chaiyakulsil C, Chantra M, Katanyuwong P, Khositseth A, Anantasit N. Comparison of three non-invasive hemodynamic monitoring methods in critically ill children. PLoS One. 2018;13(6):e0199203. doi: 10.1371/journal.pone.0199203.
    1. Villavicencio C, Leache J, Marin J, Oliva I, Rodriguez A, Bodí M, Soni NJ. Basic critical care echocardiography training of intensivists allows reproducible and reliable measurements of cardiac output. Ultrasound J. 2019;11(1):5. doi: 10.1186/s13089-019-0120-0.
    1. Ficial B, Finnemore AE, Cox DJ, Broadhouse KM, Price AN, Durighel G, Ekitzidou G, Hajnal JV, Edwards AD, Groves AM. Validation study of the accuracy of echocardiographic measurements of systemic blood flow volume in newborn infants. J Am Soc Echocardiogr. 2013;26(12):1365–1371. doi: 10.1016/j.echo.2013.08.019.

Source: PubMed

3
Prenumerera