Association of cardiovascular risk factors with disease severity in cerebral cavernous malformation type 1 subjects with the common Hispanic mutation

Hélène Choquet, Jeffrey Nelson, Ludmila Pawlikowska, Charles E McCulloch, Amy Akers, Beth Baca, Yasir Khan, Blaine Hart, Leslie Morrison, Helen Kim, Hélène Choquet, Jeffrey Nelson, Ludmila Pawlikowska, Charles E McCulloch, Amy Akers, Beth Baca, Yasir Khan, Blaine Hart, Leslie Morrison, Helen Kim

Abstract

Background: Cerebral cavernous malformations (CCM) are enlarged vascular lesions affecting 0.1-0.5% of the population worldwide and causing hemorrhagic strokes, seizures, and neurological deficits. Familial CCM type 1 (CCM1) is an autosomal dominant disease caused by mutations in the Krev Interaction Trapped 1 (KRIT1/CCM1) gene, and is characterized by multiple brain lesions whose number and size increase with age. The number of lesions varies widely for unknown reasons, even among carriers of similar ages with the same mutation. The purpose of this study was to investigate whether cardiovascular (CV) risk factors influence potential markers of familial CCM1 disease severity, such as lesion count and history of intracerebral hemorrhage.

Methods: We analyzed baseline data from 185 Hispanic subjects, enrolled in the Brain Vascular Malformation Consortium study between June 2010 and March 2013. All subjects were carriers of the founder Q455X 'Common Hispanic Mutation' (CHM) in the KRIT1 gene, and had a clinical diagnosis of CCM or had an affected first- or second-degree relative with CCM. We performed a cross-sectional study, collecting detailed clinical information of CCM1-CHM subjects and cerebral susceptibility-weighted magnetic resonance imaging to assess lesion count. Linear or logistic regression analysis of log-lesion count or history of intracerebral hemorrhage and CV risk factors (age, gender, obesity, diabetes, hypertension, hyperlipidemia and smoking status) and related quantitative traits (body mass index, glycosylated hemoglobin levels, blood pressure, lipids levels and pack-years of cigarette smoking) was performed accommodating familial clustering.

Results: CCM1-CHM subjects were mainly female (63.8%) and symptomatic at presentation (63.2%). Lesion count was highly variable (mean ± SD: 57.7 ± 110.6; range: 0-713); 90% of CCM1-CHM subjects had multiple lesions at enrollment. Age (p < 0.001) was positively correlated with lesion count and male gender (p = 0.035) was associated with a greater number of lesions. Obesity (p = 0.001) and higher body mass index (p = 0.002) were associated with fewer lesions. No association with hypertension was detected, however, systolic blood pressure (p = 0.002) was associated with fewer lesions. No significant association with lesion count was observed for diabetes, hyperlipidemia, smoking status or for related quantitative traits. History of intracerebral hemorrhage was not significantly associated with any CV risk factors, however, we found borderline associations of hemorrhage with obesity (p = 0.062), systolic blood pressure (p = 0.083) and pack-years of cigarette smoking (p = 0.055). After correction for multiple testing, age and obesity remained significantly associated with lesion count in CCM1-CHM subjects.

Conclusions: These results suggest that several CV risk factors explain some of the variability in lesion count in Hispanic CCM1-CHM subjects. Although age, gender, obesity, body mass index and systolic blood pressure may influence familial CCM1 disease severity, further longitudinal studies in larger sample sizes are essential to confirm these findings.

© 2013 S. Karger AG, Basel.

References

    1. Robinson JR, Awad IA, Little JR. Natural history of the cavernous angioma. J Neurosurg. 1991;75:709–714.
    1. Rigamonti D, Drayer BP, Johnson PC, Hadley MN, Zabramski J, Spetzler RF. The MRI appearance of cavernous malformations (angiomas) J Neurosurg. 1987;67:518–524.
    1. Denier C, Labauge P, Bergametti F, Marchelli F, Riant F, Arnoult M, Maciazek J, Vicaut E, Brunereau L, Tournier-Lasserve E. Genotype-phenotype correlations in cerebral cavernous malformations patients. Ann Neurol. 2006;60:550–556.
    1. Riant F, Bergametti F, Ayrignac X, Boulday G, Tournier-Lasserve E. Recent insights into cerebral cavernous malformations: the molecular genetics of CCM. FEBS J. 2010;277:1070–1075.
    1. Morrison L, Akers A. Cerebral cavernous malformation, familial. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviews [Internet] Seattle: University of Washington; 2003. (Updated 2011 May 31). .
    1. Gunel M, Awad IA, Finberg K, Anson JA, Steinberg GK, Batjer HH, Kopitnik TA, Morrison L, Giannotta SL, Nelson-Williams C, Lifton RP. A founder mutation as a cause of cerebral cavernous malformation in Hispanic Americans. N Engl J Med. 1996;334:946–951.
    1. Sahoo T, Johnson EW, Thomas JW, Kuehl PM, Jones TL, Dokken CG, Touchman JW, Gallione CJ, Lee-Lin SQ, Kosofsky B, Kurth JH, Louis DN, Mettler G, Morrison L, Gil-Nagel A, Rich SS, Zabramski JM, Boguski MS, Green ED, Marchuk DA. Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1) Hum Mol Genet. 1999;8:2325–2333.
    1. Denier C, Labauge P, Brunereau L, Cave-Riant F, Marchelli F, Arnoult M, Cecillon M, Maciazek J, Joutel A, Tournier-Lasserve E. Clinical features of cerebral cavernous malformations patients with KRIT1 mutations. Ann Neurol. 2004;55:213–220.
    1. Akers AL, Ball KL, Clancy M, Comi AM, Faughnan ME, Gopal-Srivastava R, Jacobs TP, Kim H, Krischer J, Marchuk DA, McCulloch CE, Morrison L, Moses MA, Pawlikowska L, Young WL. Brain Vascular Malformation Consortium: Overview, progress and future directions. J Rare Disord [Internet] 2013;1:1–15. .
    1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–e245.
    1. Maiuri F, Cappabianca P, Gangemi M, del De Caro MB, Esposito F, Pettinato G, de Divitiis O, Mignogna C, Strazzullo V, de Divitiis E. Clinical progression and familial occurrence of cerebral cavernous angiomas: the role of angiogenic and growth factors. Neurosurg Focus. 2006;21:e3.
    1. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R, Mei Z, Curtin LR, Roche AF, Johnson CL. CDC growth charts: United States. Adv Data. 2000:1–27.
    1. Al-Shahi Salman R, Berg MJ, Morrison L, Awad IA. Hemorrhage from cerebral cavernous malformations: definition and reporting standards. Stroke. 2008;39:3222–3230.
    1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA. 2012;307:483–490.
    1. Schmidt DS, Salahudeen AK. Obesity-survival paradox-still a controversy? Semin Dial. 2007;20:486–492.
    1. Greenberg JA. The obesity paradox in the US population. Am J Clin Nutr. 2013;97:1195–1200.
    1. Doehner W, Schenkel J, Anker SD, Springer J, Audebert HJ. Overweight and obesity are associated with improved survival, functional outcome, and stroke recurrence after acute stroke or transient ischaemic attack: observations from the TEMPiS trial. Eur Heart J. 2013;34:268–277.
    1. Ovbiagele B, Bath PM, Cotton D, Vinisko R, Diener HC. Obesity and recurrent vascular risk after a recent ischemic stroke. Stroke. 2011;42:3397–3402.
    1. Liese AD, D’Agostino RB, Jr, Hamman RF, Kilgo PD, Lawrence JM, Liu LL, Loots B, Linder B, Marcovina S, Rodriguez B, Standiford D, Williams DE. The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics. 2006;118:1510–1518.
    1. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, Jones DW, Kurtz T, Sheps SG, Roccella EJ. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation. 2005;111:697–716.

Source: PubMed

3
Prenumerera