Supplementation of krill oil with high phospholipid content increases sum of EPA and DHA in erythrocytes compared with low phospholipid krill oil

V R Ramprasath, I Eyal, S Zchut, I Shafat, P J H Jones, V R Ramprasath, I Eyal, S Zchut, I Shafat, P J H Jones

Abstract

Background: Bioavailability of krill oil has been suggested to be higher than fish oil as much of the EPA and DHA in krill oil are bound to phospholipids (PL). Hence, PL content in krill oil might play an important role in incorporation of n-3 PUFA into the RBC, conferring properties that render it effective in reducing cardiovascular disease (CVD) risk. The objective of the present trial was to test the effect of different amounts of PL in krill oil on the bioavailability of EPA and DHA, assessed as the rate of increase of n-3 PUFA in plasma and RBC, in healthy volunteers.

Methods and design: In a semi randomized crossover single blind design study, 20 healthy participants consumed various oils consisting of 1.5 g/day of low PL krill oil (LPL), 3 g/day of high PL krill oil (HPL) or 3 g/day of a placebo, corn oil, for 4 weeks each separated by 8 week washout periods. Both LPL and HPL delivered 600 mg of total n-3 PUFA/day along with 600 and 1200 mg/day of PL, respectively.

Results: Changes in plasma EPA, DPA, DHA, total n-3 PUFA, n-6:n-3 ratio and EPA + DHA concentrations between LPL and HPL krill oil supplementations were observed to be similar. Intake of both forms of krill oils increased the RBC level of EPA (p < 0.001) along with reduced n-6 PUFA (LPL: p < 0.001: HPL: p = 0.007) compared to control. HPL consumption increased (p < 0.001) RBC concentrations of EPA, DPA, total and n-3 PUFA compared with LPL. Furthermore, although LPL did not alter RBC n-6:n-3 ratio or the sum of EPA and DHA compared to control, HPL intake decreased (p < 0.001) n-6:n-3 ratio relative to control with elevated (p < 0.001) sum of EPA and DHA compared to control as well as to LPL krill oil consumption. HPL krill oil intake elevated (p < 0.005) plasma total and LDL cholesterol concentrations compared to control, while LPL krill oil did not alter total and LDL cholesterol, relative to control.

Conclusions: The results indicate that krill oil with higher PL levels could lead to enhanced bioavailability of n-3 PUFA compared to krill oil with lower PL levels.

Trial registration: Clinicaltrials.gov# NCT01323036.

References

    1. Harris WS, Miller M, Tighe AP, Davidson MH, Schaefer EJ. Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis. 2008;197:12–24. doi: 10.1016/j.atherosclerosis.2007.11.008.
    1. Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106:2747–57. doi: 10.1161/01.CIR.0000038493.65177.94.
    1. Harris WS. n-3 fatty acids and serum lipoproteins: human studies. Am J Clin Nutr. 1997;65:1645S–54.
    1. Breslow JL. n-3 fatty acids and cardiovascular disease. Am J Clin Nutr. 2006;83:1477S–82.
    1. Bunea R, El Farrah K, Deutsch L. Evaluation of the effects of neptune krill oil on the clinical course of hyperlipidemia. Altern Med Rev. 2004;9:420–8.
    1. Maki KC, Reeves MS, Farmer M, Griinari M, Berge K, Vik H, Hubacher R, Rains TM. Krill oil supplementation increases plasma concentrations of eicosapentaenoic and docosahexaenoic acids in overweight and obese men and women. Nutr Res. 2009;29:609–15. doi: 10.1016/j.nutres.2009.09.004.
    1. Ulven SM, Kirkhus B, Lamglait A, Basu S, Elind E, Haider T, Berge K, Vik H, Pedersen JI. Metabolic effects of krill oil are essentially similar to those of fish oil but at lower dose of EPA and DHA, in healthy volunteers. Lipids. 2011;46:37–46. doi: 10.1007/s11745-010-3490-4.
    1. Ramprasath VR, Eyal I, Zchut S, Jones PJ. Enhanced increase of omega-3 index in healthy individuals with response to 4-week n-3 fatty acid supplementation from krill oil versus fish oil. Lipids Health Dis. 2013;12:178. doi: 10.1186/1476-511X-12-178.
    1. Rossmeisl M, Jilkova ZM, Kuda O, Jelenik T, Medrikova D, Stankova B, Kristinsson B, Haraldsson GG, Svensen H, Stoknes I, et al. Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: possible role of endocannabinoids. PLoS One. 2012;7:e38834. doi: 10.1371/journal.pone.0038834.
    1. Hiratsuka S, Ishihara K, Kitagawa T, Wada S, Yokogoshi H. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice. J Nutr Sci Vitaminol (Tokyo) 2008;54:501–6. doi: 10.3177/jnsv.54.501.
    1. Schuchardt JP, Schneider I, Meyer H, Neubronner J, von Schacky C, Hahn A. Incorporation of EPA and DHA into plasma phospholipids in response to different omega-3 fatty acid formulations--a comparative bioavailability study of fish oil vs. krill oil. Lipids Health Dis. 2011;10:145. doi: 10.1186/1476-511X-10-145.
    1. Batetta B, Griinari M, Carta G, Murru E, Ligresti A, Cordeddu L, Giordano E, Sanna F, Bisogno T, Uda S, et al. Endocannabinoids may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflammatory mediators in obese Zucker rats. J Nutr. 2009;139:1495–501. doi: 10.3945/jn.109.104844.
    1. Graf BA, Duchateau GS, Patterson AB, Mitchell ES, van Bruggen P, Koek JH, Melville S, Verkade HJ. Age dependent incorporation of 14C-DHA into rat brain and body tissues after dosing various 14C-DHA-esters. Prostaglandins Leukot Essent Fatty Acids. 2010;83:89–96. doi: 10.1016/j.plefa.2010.05.004.
    1. Di Marzo V, Griinari M, Carta G, Murru E, Ligresti A, Cordeddu L, Giordano E, Bisogno T, Collu M, Batetta B, Uda S, Berge K, Banni S. Dietary krill oil increases docosahexaenoic acid and reduces 2-arachidonoylglycerol but not N-acylethanolamine levels in the brain of obese Zucker rats. Int Dairy J. 2010;20:231–5. doi: 10.1016/j.idairyj.2009.11.015.
    1. Werner A, Havinga R, Kuipers F, Verkade HJ. Treatment of EFA deficiency with dietary triglycerides or phospholipids in a murine model of extrahepatic cholestasis. Am J Physiol Gastrointest Liver Physiol. 2004;286:G822–32. doi: 10.1152/ajpgi.00425.2003.
    1. Harris WS, Thomas RM. Biological variability of blood omega-3 biomarkers. Clin Biochem. 2010;43:338–40. doi: 10.1016/j.clinbiochem.2009.08.016.
    1. Harris WS, Varvel SA, Pottala JV, Warnick GR, McConnell JP. Comparative effects of an acute dose of fish oil on omega-3 fatty acid levels in red blood cells versus plasma: implications for clinical utility. J Clin Lipidol. 2013;7:433–40. doi: 10.1016/j.jacl.2013.05.001.
    1. Burri L, Hoem N, Banni S, Berge K. Marine omega-3 phospholipids: metabolism and biological activities. Int J Mol Sci. 2012;13:15401–19. doi: 10.3390/ijms131115401.
    1. Schuchardt JP, Hahn A. Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2013;89:1–8. doi: 10.1016/j.plefa.2013.03.010.
    1. Zierenberg O, Grundy SM. Intestinal absorption of polyenephosphatidylcholine in man. J Lipid Res. 1982;23:1136–42.
    1. Rampone AJ, Long LW. The effect of phosphatidylcholine and lysophosphatidylcholine on the absorption and mucosal metabolism of oleic acid and cholesterol in vitro. Biochim Biophys Acta. 1977;486:500–10. doi: 10.1016/0005-2760(77)90100-X.
    1. Artom C, Swanson MA. On the absorption of phospholipides. J Biol Chem. 1948;175:871–81.
    1. Bloom B, Kiyasu JY, Reinhardt WO, Chaikoff IL. Absorption of phospholipides; manner of transport from intestinal lumen to lacteals. Am J Physiol. 1954;177:84–6.
    1. Blomstrand R. The intestinal absorption of phospholipids in the rat. Acta Physiol Scand. 1955;34:147–57. doi: 10.1111/j.1748-1716.1955.tb01234.x.
    1. Scow RO, Stein Y, Stein O. Incorporation of dietary lecithin and lysolecithin into lymph chylomicrons in the rat. J Biol Chem. 1967;242:4919–24.
    1. Lagarde M. Docosahexaenoic acid: nutrient and precursor of bioactive lipids. Eur J Lipid Sci Technol. 2008;110:673–8. doi: 10.1002/ejlt.200800087.
    1. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, Wenk MR, Goh EL, Silver DL. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014;509:503–6. doi: 10.1038/nature13241.
    1. Murru E, Banni S, Carta G. Nutritional properties of dietary omega-3-enriched phospholipids. Biomed Res Int. 2013;2013:965417. doi: 10.1155/2013/965417.
    1. Arterburn LM, Hall EB, Oken H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr. 2006;83:1467S–76.
    1. Kopecky J, Rossmeisl M, Flachs P, Kuda O, Brauner P, Jilkova Z, Stankova B, Tvrzicka E, Bryhn M. n-3 PUFA: bioavailability and modulation of adipose tissue function. Proc Nutr Soc. 2009;68:361–9. doi: 10.1017/S0029665109990231.
    1. Iqbal J, Hussain MM. Intestinal lipid absorption. Am J Physiol Endocrinol Metab. 2009;296:E1183–94. doi: 10.1152/ajpendo.90899.2008.
    1. Cohn JS, Kamili A, Wat E, Chung RW, Tandy S. Dietary phospholipids and intestinal cholesterol absorption. Nutrients. 2010;2:116–27. doi: 10.3390/nu2020116.
    1. Fekete K, Marosvolgyi T, Jakobik V, Decsi T. Methods of assessment of n-3 long-chain polyunsaturated fatty acid status in humans: a systematic review. Am J Clin Nutr. 2009;89:2070S–84. doi: 10.3945/ajcn.2009.27230I.
    1. Katan MB, Deslypere JP, van Birgelen AP, Penders M, Zegwaard M. Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res. 1997;38:2012–22.
    1. Kris-Etherton PM, Harris WS, Appel LJ, American Heart Association. Nutrition C Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106:2747–57. doi: 10.1161/01.CIR.0000038493.65177.94.
    1. Sadzuka Y, Sugiyama I, Miyashita M, Ueda T, Kikuchi S, Oshiro E, Yano A, Yamada H. Beneficial effects by intake of Euphausiacea pacifica on high-fat diet-induced obesity. Biol Pharm Bull. 2012;35:568–72. doi: 10.1248/bpb.35.568.
    1. van der Kooy K, Seidell JC. Techniques for the measurement of visceral fat: a practical guide. Int J Obes Relat Metab Disord. 1993;17:187–96.
    1. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.
    1. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

Source: PubMed

3
Prenumerera