Volumetric capnography: lessons from the past and current clinical applications

Sara Verscheure, Paul B Massion, Franck Verschuren, Pierre Damas, Sheldon Magder, Sara Verscheure, Paul B Massion, Franck Verschuren, Pierre Damas, Sheldon Magder

Abstract

Dead space is an important component of ventilation-perfusion abnormalities. Measurement of dead space has diagnostic, prognostic and therapeutic applications. In the intensive care unit (ICU) dead space measurement can be used to guide therapy for patients with acute respiratory distress syndrome (ARDS); in the emergency department it can guide thrombolytic therapy for pulmonary embolism; in peri-operative patients it can indicate the success of recruitment maneuvers. A newly available technique called volumetric capnography (Vcap) allows measurement of physiological and alveolar dead space on a regular basis at the bedside. We discuss the components of dead space, explain important differences between the Bohr and Enghoff approaches, discuss the clinical significance of arterial to end-tidal CO2 gradient and finally summarize potential clinical indications for Vcap measurements in the emergency room, operating room and ICU.

Figures

Fig. 1
Fig. 1
Riley three compartment model. Compartment A: shunt = perfused but not ventilated alveolae (V/Q = 0). Compartment B: ideal condition. Compartment C: dead space = ventilated but not perfused alveolae (V/Q = ∞). VDaw airway dead space, VDalv alveolar dead space, VDphys the sum of airway and alveolar dead space
Fig. 2
Fig. 2
Concentration of CO2 during a tidal expiration. Phase I: beginning of expiration; expired gas represents contents of the conduction compartment of the respiratory system. Phase II: transition between anatomic and alveolar dead space. Phase III: alveolar gas. Expired FCO2 (%) fraction of expired CO2, SIII slope of phase III, VTCO2,br CO2 elimination per breath
Fig. 3
Fig. 3
Fletcher approach for evaluating expired gases. The shaded area is the total dead space for the breath. Area z (area to the left of the solid line) is the airway dead space (VDaw), area y (area above the slope of phase III) is the alveolar dead space (VDalv, in this case as per Enghoff). As per the Fowler approach [2], area q is equal to area p. Area x (area under capnogram curve) is the volume of CO2 expired per breath (VTCO2,br)
Fig. 4
Fig. 4
Volumes identified with volumetric capnography (based on Tang et al. [19]). The line a–b defines equal area q and p as in Fig. 3. The line c–d is created so that area A equals area B. The distance from b to d defines alveolar dead space (VDalv). Tang et al. did their analysis with the Enghoff approach which uses PaCO2 instead of PACO2 as in the Bohr approach. If PACO2 were used instead the line c–d would be more to the left and the value of VDalv smaller. VDaw is the anatomical dead space, VDalv is the alveolar dead space, VDphys is the physiological dead space, VTalv-eff is the efficient alveolar tidal volume, VTalv is the alveolar tidal volume, VT is the tidal volume
Fig. 5
Fig. 5
Difference between the Bohr approach and Enghoff approach. VDaw is the anatomical dead space, VDalv is the alveolar dead space, PACO2 is the alveolar partial pressure of CO2, PaCO2 is the arterial partial pressure of CO2, PĒCO2 is the mixed expired partial pressure of CO2
Fig. 6
Fig. 6
Schematic representation of three-compartment lung model, showing specific indices of capillary, alveolar and global efficiency of gas exchange. See text for abbreviations

References

    1. Anderson CT, Breen PH. Carbon dioxide kinetics and capnography during critical care. Crit Care. 2000;4(4):207–15. doi: 10.1186/cc696.
    1. Fowler WS. Lung function studies; the respiratory dead space. Am J Physiol. 1948;154(3):405–16.
    1. Fletcher R, Jonson B, Cumming G, Brew J. The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth. 1981;53(1):77–88. doi: 10.1093/bja/53.1.77.
    1. Sinha P, Flower O, Soni N. Deadspace ventilation: a waste of breath! Intensive Care Med. 2011;37(5):735–46. doi: 10.1007/s00134-011-2194-4.
    1. Siobal MS, Ong H, Valdes J, Tang J. Calculation of physiologic dead space: comparison of ventilator volumetric capnography to measurements by metabolic analyzer and volumetric CO2 monitor. Respiratory Care. 2013;58(7):1143–51. doi: 10.4187/respcare.02116.
    1. Tusman G, Sipmann FS, Bohm SH. Rationale of dead space measurement by volumetric capnography. Anesth Analg. 2012;114(4):866–74. doi: 10.1213/ANE.0b013e318247f6cc.
    1. Suarez-Sipmann F, Bohm SH, Tusman G. Volumetric capnography: the time has come. Curr Opin Crit Care. 2014;20(3):333–9. doi: 10.1097/MCC.0000000000000095.
    1. Riley RL, Cournand A. Ideal alveolar air and the analysis of ventilation-perfusion relationships in the lungs. J Appl Physiol. 1949;1(12):825–47.
    1. Wagner PD, Saltzman HA, West JB. Measurement of continuous distributions of ventilation-perfusion ratios: theory. J Appl Physiol. 1974;36(5):588–99.
    1. Tusman G, Gogniat E, Bohm SH, Scandurra A, Suarez-Sipmann F, Torroba A, et al. Reference values for volumetric capnography-derived non-invasive parameters in healthy individuals. J Clin Monitor Comput. 2013;27(3):281–8. doi: 10.1007/s10877-013-9433-x.
    1. Douglas CG, Haldane JS. The capacity of the air passages under varying physiological conditions. J Physiol. 1912;45(4):235–8. doi: 10.1113/jphysiol.1912.sp001549.
    1. Severinghaus JW, Stupfel M. Alveolar dead space as an index of distribution of blood flow in pulmonary capillaries. J Appl Physiol. 1957;10(3):335–48.
    1. Bartels J, Severinghaus JW, Forster RE, Briscoe WA, Bates DV. The respiratory dead space measured by single breath analysis of oxygen, carbon dioxide, nitrogen or helium. J Clin Invest. 1954;33(1):41–8. doi: 10.1172/JCI102868.
    1. Tusman G, Sipmann FS, Borges JB, Hedenstierna G, Bohm SH. Validation of Bohr dead space measured by volumetric capnography. Intensive Care Med. 2011;37(5):870–4. doi: 10.1007/s00134-011-2164-x.
    1. Kallet RH, Daniel BM, Garcia O, Matthay MA. Accuracy of physiologic dead space measurements in patients with acute respiratory distress syndrome using volumetric capnography: comparison with the metabolic monitor method. Respir Care. 2005;50(4):462–7.
    1. Verschuren F, Heinonen E, Clause D, Zech F, Reynaert MS, Liistro G. Volumetric capnography: reliability and reproducibility in spontaneously breathing patients. Clin Physiol Funct Imaging. 2005;25(5):275–80. doi: 10.1111/j.1475-097X.2005.00620.x.
    1. Sinha P, Soni N. Comparison of volumetric capnography and mixed expired gas methods to calculate physiological dead space in mechanically ventilated ICU patients. Intensive Care Med. 2012;38(10):1712–7. doi: 10.1007/s00134-012-2670-5.
    1. Crossman PF, Bushnell LS, Hedley-Whyte J. Dead space during artificial ventilation: gas compression and mechanical dead space. J Appl Physiol. 1970;28(1):94–7.
    1. Tang Y, Turner MJ, Baker AB. A new equal area method to calculate and represent physiologic, anatomical, and alveolar dead spaces. Anesthesiology. 2006;104(4):696–700. doi: 10.1097/00000542-200604000-00013.
    1. Suarez-Sipmann F, Santos A, Bohm SH, Borges JB, Hedenstierna G, Tusman G. Corrections of Enghoff's dead space formula for shunt effects still overestimate Bohr's dead space. Respir Physiol Neurobiol. 2013;189(1):99–105. doi: 10.1016/j.resp.2013.06.020.
    1. Kuwabara S, Duncalf D. Effect of anatomic shunt on physiologic deadspace-to-tidal volume ratio--a new equation. Anesthesiology. 1969;31(6):575–7. doi: 10.1097/00000542-196912000-00012.
    1. Niklason L, Eckerstrom J, Jonson B. The influence of venous admixture on alveolar dead space and carbon dioxide exchange in acute respiratory distress syndrome: computer modelling. Crit Care. 2008;12(2):R53. doi: 10.1186/cc6872.
    1. Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346(17):1281–6. doi: 10.1056/NEJMoa012835.
    1. Kallet RH, Alonso JA, Pittet JF, Matthay MA. Prognostic value of the pulmonary dead-space fraction during the first 6 days of acute respiratory distress syndrome. Respir Care. 2004;49(9):1008–14.
    1. Cepkova M, Kapur V, Ren X, Quinn T, Zhuo H, Foster E, et al. Pulmonary dead space fraction and pulmonary artery systolic pressure as early predictors of clinical outcome in acute lung injury. Chest. 2007;132(3):836–42. doi: 10.1378/chest.07-0409.
    1. Lucangelo U, Bernabe F, Vatua S, Degrassi G, Villagra A, Fernandez R, et al. Prognostic value of different dead space indices in mechanically ventilated patients with acute lung injury and ARDS. Chest. 2008;133(1):62–71. doi: 10.1378/chest.07-0935.
    1. Kallet RH, Zhuo H, Liu KD, Calfee CS, Matthay MA, National Heart L, et al. The association between physiologic dead-space fraction and mortality in subjects with ARDS enrolled in a prospective multi-center clinical trial. Respir Care. 2014;59(11):1611–8. doi: 10.4187/respcare.02593.
    1. Suter PM, Fairley B, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292(6):284–9. doi: 10.1056/NEJM197502062920604.
    1. Tusman G, Suarez-Sipmann F, Bohm SH, Pech T, Reissmann H, Meschino G, et al. Monitoring dead space during recruitment and PEEP titration in an experimental model. Intensive Care Med. 2006;32(11):1863–71. doi: 10.1007/s00134-006-0371-7.
    1. Tusman G, Suarez-Sipmann F, Bohm SH, Borges JB, Hedenstierna G. Capnography reflects ventilation/perfusion distribution in a model of acute lung injury. Acta Anaesthesiol Scand. 2011;55(5):597–606. doi: 10.1111/j.1399-6576.2011.02404.x.
    1. Mosing M, Kutter AP, Iff S, Raszplewicz J, Mauch J, Bohm SH, et al. The effects of cardiac output and pulmonary arterial hypertension on volumetric capnography derived-variables during normoxia and hypoxia. J Clin Monitor Comput. 2015;29(1):187–96. doi: 10.1007/s10877-014-9588-0.
    1. Blanch L, Lucangelo U, Lopez-Aguilar J, Fernandez R, Romero PV. Volumetric capnography in patients with acute lung injury: effects of positive end-expiratory pressure. Eur Respir J. 1999;13(5):1048–54. doi: 10.1034/j.1399-3003.1999.13e19.x.
    1. Beydon L, Uttman L, Rawal R, Jonson B. Effects of positive end-expiratory pressure on dead space and its partitions in acute lung injury. Intensive Care Med. 2002;28(9):1239–45. doi: 10.1007/s00134-002-1419-y.
    1. Pelosi P, Brazzi L, Gattinoni L. Prone position in acute respiratory distress syndrome. Eur Respir J. 2002;20(4):1017–28. doi: 10.1183/09031936.02.00401702.
    1. Gattinoni L, Vagginelli F, Carlesso E, Taccone P, Conte V, Chiumello D, et al. Decrease in PaCO2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med. 2003;31(12):2727–33. doi: 10.1097/01.CCM.0000098032.34052.F9.
    1. Charron C, Repesse X, Bouferrache K, Bodson L, Castro S, Page B, et al. PaCO2 and alveolar dead space are more relevant than PaO2/FiO2 ratio in monitoring the respiratory response to prone position in ARDS patients: a physiological study. Crit Care. 2011;15(4):R175. doi: 10.1186/cc10324.
    1. Johannigman JA, Davis K, Jr, Miller SL, Campbell RS, Luchette FA, Frame SB, et al. Prone positioning for acute respiratory distress syndrome in the surgical intensive care unit: who, when, and how long? Surgery. 2000;128(4):708–16. doi: 10.1067/msy.2000.108225.
    1. Soro M, Garcia-Perez ML, Belda FJ, Ferrandis R, Aguilar G, Tusman G, et al. Effects of prone position on alveolar dead space and gas exchange during general anaesthesia in surgery of long duration. Eur J Anaesthesiol. 2007;24(5):431–7. doi: 10.1017/S0265021506001888.
    1. Kline JA, Israel EG, Michelson EA, O'Neil BJ, Plewa MC, Portelli DC. Diagnostic accuracy of a bedside D-dimer assay and alveolar dead-space measurement for rapid exclusion of pulmonary embolism: a multicenter study. JAMA. 2001;285(6):761–8. doi: 10.1001/jama.285.6.761.
    1. Verschuren F, Liistro G, Coffeng R, Thys F, Roeseler J, Zech F, et al. Volumetric capnography as a screening test for pulmonary embolism in the emergency department. Chest. 2004;125(3):841–50. doi: 10.1378/chest.125.3.841.
    1. Eriksson L, Wollmer P, Olsson CG, Albrechtsson U, Larusdottir H, Nilsson R, et al. Diagnosis of pulmonary embolism based upon alveolar dead space analysis. Chest. 1989;96(2):357–62. doi: 10.1378/chest.96.2.357.
    1. Verschuren F, Sanchez O, Righini M, Heinonen E, Le Gal G, Meyer G, et al. Volumetric or time-based capnography for excluding pulmonary embolism in outpatients? J Thrombosis Haemostasis. 2010;8(1):60–7. doi: 10.1111/j.1538-7836.2009.03667.x.
    1. Manara A, D'Hoore W, Thys F. Capnography as a diagnostic tool for pulmonary embolism: a meta-analysis. Ann Emerg Med. 2013;62(6):584–91. doi: 10.1016/j.annemergmed.2013.04.010.
    1. Verschuren F, Heinonen E, Clause D, Roeseler J, Thys F, Meert P, et al. Volumetric capnography as a bedside monitoring of thrombolysis in major pulmonary embolism. Intensive Care Med. 2004;30(11):2129–32. doi: 10.1007/s00134-004-2444-9.
    1. Moreira MM, Terzi RG, Carvalho CH, de Oliveira Neto AF, Pereira MC, Paschoal IA. Alveolar dead space and capnographic variables before and after thrombolysis in patients with acute pulmonary embolism. Vascular Health Risk Management. 2009;5(1):9–12.
    1. Tusman G, Bohm SH, Suarez-Sipmann F, Turchetto E. Alveolar recruitment improves ventilatory efficiency of the lungs during anesthesia. Can J Anaesthesia. 2004;51(7):723–7. doi: 10.1007/BF03018433.
    1. Maisch S, Reissmann H, Fuellekrug B, Weismann D, Rutkowski T, Tusman G, et al. Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients. Anesth Analg. 2008;106(1):175–81. doi: 10.1213/01.ane.0000287684.74505.49.
    1. Bohm SH, Maisch S, von Sandersleben A, Thamm O, Passoni I, Martinez Arca J, et al. The effects of lung recruitment on the Phase III slope of volumetric capnography in morbidly obese patients. Anesth Analg. 2009;109(1):151–9. doi: 10.1213/ane.0b013e31819bcbb5.
    1. Tusman G, Groisman I, Fiolo FE, Scandurra A, Arca JM, Krumrick G, et al. Noninvasive monitoring of lung recruitment maneuvers in morbidly obese patients: the role of pulse oximetry and volumetric capnography. Anesth Analg. 2014;118(1):137–44. doi: 10.1213/01.ane.0000438350.29240.08.
    1. Tusman G, Bohm SH, Suarez-Sipmann F. Dead space during one-lung ventilation. Curr Opin Anaesthesiol. 2015;28(1):10–7. doi: 10.1097/ACO.0000000000000153.
    1. Unzueta C, Tusman G, Suarez-Sipmann F, Bohm S, Moral V. Alveolar recruitment improves ventilation during thoracic surgery: a randomized controlled trial. Br J Anaesth. 2012;108(3):517–24. doi: 10.1093/bja/aer415.
    1. Ferrando C, Mugarra A, Gutierrez A, Carbonell JA, Garcia M, Soro M, et al. Setting individualized positive end-expiratory pressure level with a positive end-expiratory pressure decrement trial after a recruitment maneuver improves oxygenation and lung mechanics during one-lung ventilation. Anesth Analg. 2014;118(3):657–65. doi: 10.1213/ANE.0000000000000105.
    1. Hubble CL, Gentile MA, Tripp DS, Craig DM, Meliones JN, Cheifetz IM. Deadspace to tidal volume ratio predicts successful extubation in infants and children. Crit Care Med. 2000;28(6):2034–40. doi: 10.1097/00003246-200006000-00059.
    1. Gonzalez-Castro A, Suarez-Lopez V, Gomez-Marcos V, Gonzalez-Fernandez C, Iglesias-Posadilla D, Buron-Mediavilla J, et al. Utility of the dead space fraction (Vd/Vt) as a predictor of extubation success. Medicina Intensiva. 2011;35(9):529–38. doi: 10.1016/j.medin.2011.05.016.
    1. Peyton PJ, Venkatesan Y, Hood SG, Junor P, May C. Noninvasive, automated and continuous cardiac output monitoring by pulmonary capnodynamics: breath-by-breath comparison with ultrasonic flow probe. Anesthesiology. 2006;105(1):72–80. doi: 10.1097/00000542-200607000-00015.
    1. Tusman G, Groisman I, Maidana GA, Scandurra A, Arca JM, Bohm SH, et al. The sensitivity and specificity of pulmonary carbon dioxide elimination for noninvasive assessment of fluid responsiveness. Anesth Analg. 2016;122(5):1404–11. doi: 10.1213/ANE.0000000000001047.

Source: PubMed

3
Prenumerera