The Bioenergetic Health Index: a new concept in mitochondrial translational research

Balu K Chacko, Philip A Kramer, Saranya Ravi, Gloria A Benavides, Tanecia Mitchell, Brian P Dranka, David Ferrick, Ashwani K Singal, Scott W Ballinger, Shannon M Bailey, Robert W Hardy, Jianhua Zhang, Degui Zhi, Victor M Darley-Usmar, Balu K Chacko, Philip A Kramer, Saranya Ravi, Gloria A Benavides, Tanecia Mitchell, Brian P Dranka, David Ferrick, Ashwani K Singal, Scott W Ballinger, Shannon M Bailey, Robert W Hardy, Jianhua Zhang, Degui Zhi, Victor M Darley-Usmar

Abstract

Bioenergetics has become central to our understanding of pathological mechanisms, the development of new therapeutic strategies and as a biomarker for disease progression in neurodegeneration, diabetes, cancer and cardiovascular disease. A key concept is that the mitochondrion can act as the 'canary in the coal mine' by serving as an early warning of bioenergetic crisis in patient populations. We propose that new clinical tests to monitor changes in bioenergetics in patient populations are needed to take advantage of the early and sensitive ability of bioenergetics to determine severity and progression in complex and multifactorial diseases. With the recent development of high-throughput assays to measure cellular energetic function in the small number of cells that can be isolated from human blood these clinical tests are now feasible. We have shown that the sequential addition of well-characterized inhibitors of oxidative phosphorylation allows a bioenergetic profile to be measured in cells isolated from normal or pathological samples. From these data we propose that a single value-the Bioenergetic Health Index (BHI)-can be calculated to represent the patient's composite mitochondrial profile for a selected cell type. In the present Hypothesis paper, we discuss how BHI could serve as a dynamic index of bioenergetic health and how it can be measured in platelets and leucocytes. We propose that, ultimately, BHI has the potential to be a new biomarker for assessing patient health with both prognostic and diagnostic value.

Figures

Figure 1. BHI as a dynamic measure…
Figure 1. BHI as a dynamic measure of the response of the body to stress
In this scheme, healthy subjects have a high BHI with a high bioenergetic reserve capacity, high ATP-linked respiration (AL) and low proton leak (PL). The population of mitochondria is maintained by regenerative biogenesis. During normal metabolism, a sub-healthy mitochondrial population, still capable of meeting the energetic demand of the cell, accumulates functional defects, which can be repaired or turned over by mitophagy. Chronic metabolic stress induces damage in the mitochondrial respiratory machinery by progressively decreasing mitochondrial function and this manifests as low ATP-linked respiration, low reserve capacity and high non-mitochondrial (e.g. ROS generation) respiration. These bioenergetically inefficient damaged mitochondria exhibit increased proton leak and require higher levels of ATP for maintaining organelle integrity, which increases the basal oxygen consumption. In addition, chronic metabolic stress also promotes mitochondrial superoxide generation leading to increased oxidative stress, which can amplify mitochondrial damage, the population of unhealthy mitochondria and basal cellular energy requirements. The persistence of unhealthy mitochondria damages the mtDNA, which impairs the integrity of the biogenesis programme, leading to a progressive deterioration in bioenergetic function, which we propose can be identified by changes in different parameters of the bioenergetics profile and decreasing BHI.
Figure 2. Cellular mitochondrial profile in human…
Figure 2. Cellular mitochondrial profile in human monocytes
This assay defines cellular mitochondrial function using the well-defined inhibitors, oligomycin (Oligo), FCCP and antimycin A (AntiA) [12]. The interpretation of the different parameters defined by the assay is described in the accompanying text. Data is typically normalized to total protein or cell number in each well. Values are means±S.E.M., n=3–5.
Figure 3. Change in the BHI of…
Figure 3. Change in the BHI of monocytes subjected to oxidative stress
(A) The bioenergetic profiles of freshly isolated CD14+ monocytes from healthy volunteers were exposed to 4-HNE (20 μM for 1 h at 37°C) before the assay. AntiA, antimycin A; Oligo, oligomycin. (B) The BHI calculated using the mathematical relationship described in the text from the profile in (A) is demonstrated. Mean data (n=3–5 replicates) were plotted with ±S.E.M. (A) and +S.D. (B). #P ≤ 0.0001. All study protocols for collection and handling of human samples were reviewed and approved by the Institutional Review Board, University of Alabama at Birmingham.

References

    1. Sundstrom J., Riserus U., Byberg L., Zethelius B., Lithell H., Lind L. Clinical value of the metabolic syndrome for long term prediction of total and cardiovascular mortality: prospective, population based cohort study. BMJ. 2006;332:878–882. doi: 10.1136/bmj.38766.624097.1F.
    1. Blake R., Trounce I. A. Mitochondrial dysfunction and complications associated with diabetes. Biochim. Biophys. Acta. 2013;1840:1404–1412. doi: 10.1016/j.bbagen.2013.11.007.
    1. Ilkun O., Boudina S. Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr. Pharm. Des. 2013;19:4806–4817. doi: 10.2174/1381612811319270003.
    1. Caimari A., Oliver P., Keijer J., Palou A. Peripheral blood mononuclear cells as a model to study the response of energy homeostasis-related genes to acute changes in feeding conditions. OMICS. 2010;14:129–141. doi: 10.1089/omi.2009.0092.
    1. Japiassu A. M., Santiago A. P., d’Avila J. C., Garcia-Souza L. F., Galina A., Castro Faria-Neto H. C., Bozza F. A., Oliveira M. F. Bioenergetic failure of human peripheral blood monocytes in patients with septic shock is mediated by reduced F1Fo adenosine-5′-triphosphate synthase activity. Crit. Care Med. 2011;39:1056–1063. doi: 10.1097/CCM.0b013e31820eda5c.
    1. Sternfeld T., Tischleder A., Schuster M., Bogner J. R. Mitochondrial membrane potential and apoptosis of blood mononuclear cells in untreated HIV-1 infected patients. HIV Med. 2009;10:512–519. doi: 10.1111/j.1468-1293.2009.00723.x.
    1. Shikuma C. M., Gerschenson M., Chow D., Libutti D. E., Willis J. H., Murray J., Capaldi R. A., Marusich M. Mitochondrial oxidative phosphorylation protein levels in peripheral blood mononuclear cells correlate with levels in subcutaneous adipose tissue within samples differing by HIV and lipoatrophy status. AIDS Res. Hum. Retroviruses. 2008;24:1255–1262. doi: 10.1089/aid.2007.0262.
    1. Korsten A., de Coo I. F., Spruijt L., de Wit L. E., Smeets H. J., Sluiter W. Patients with Leber hereditary optic neuropathy fail to compensate impaired oxidative phosphorylation. Biochim. Biophys. Acta. 2010;1797:197–203. doi: 10.1016/j.bbabio.2009.10.003.
    1. Chacko B. K., Kramer P. A., Ravi S., Johnson M. S., Hardy R. W., Ballinger S. W., Darley-Usmar V. M. Methods for defining distinct bioenergetic profiles in platelets, lympho-cytes, monocytes, and neutrophils, and the oxidative burst from human blood. Lab. Invest. 2013;93:690–700. doi: 10.1038/labinvest.2013.53.
    1. Dranka B. P., Benavides G. A., Diers A. R., Giordano S., Zelickson B. R., Reily C., Zou L. Y., Chatham J. C., Hill B. G., Zhang J. H., et al. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic. Biol. Med. 2011;51:1621–1635. doi: 10.1016/j.freeradbiomed.2011.08.005.
    1. Nicholls D. G., Darley-Usmar V. M., Wu M., Jensen P. B., Rogers G. W., Ferrick D. A. Bioenergetic profile experiment using C2C12 myoblast cells. J. Vis. Exp. 2010;2010:2511.
    1. Hill B. G., Benavides G. A., Lancaster J. R., Jr, Ballinger S., Dell’Italia L., Jianhua Z., Darley-Usmar V. M. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol. Chem. 2012;393:1485–1512. doi: 10.1515/hsz-2012-0198.
    1. Avila C., Huang R. J., Stevens M. V., Aponte A. M., Tripodi D., Kim K. Y., Sack M. N. Platelet mitochondrial dysfunction is evident in type 2 diabetes in association with modifications of mitochondrial anti-oxidant stress proteins. Exp. Clin. Endocrinol. Diabetes. 2012;120:248–251. doi: 10.1055/s-0031-1285833.
    1. Zharikov S., Shiva S. Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease. Biochem. Soc. Trans. 2013;41:118–123. doi: 10.1042/BST20120327.
    1. Caldwell S. H., Swerdlow R. H., Khan E. M., Iezzoni J. C., Hespenheide E. E., Parks J. K., Parker W. D., Jr Mitochondrial abnormalities in non-alcoholic steatohepatitis. J. Hepatol. 1999;31:430–434. doi: 10.1016/S0168-8278(99)80033-6.
    1. Schapira A. H., Gu M., Taanman J. W., Tabrizi S. J., Seaton T., Cleeter M., Cooper J. M. Mitochondria in the etiology and pathogenesis of Parkinson's disease. Ann. Neurol. 1998;44:S89–98. doi: 10.1002/ana.410440714.
    1. Murphy M. P. Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta. 2008;1777:1028–1031. doi: 10.1016/j.bbabio.2008.03.029.
    1. Dranka B. P., Hill B. G., Darley-Usmar V. M. Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species. Free Radic. Biol. Med. 2010;48:905–914. doi: 10.1016/j.freeradbiomed.2010.01.015.
    1. Benavides G. A., Liang Q., Dodson M., Darley-Usmar V., Zhang J. Inhibition of autophagy and glycolysis by nitric oxide during hypoxia-reoxygenation impairs cellular bioenergetics and promotes cell death in primary neurons. Free Radic. Biol. Med. 2013;65:1215–1228. doi: 10.1016/j.freeradbiomed.2013.09.006.
    1. Giordano S., Lee J., Darley-Usmar V. M., Zhang J. Distinct effects of rotenone, 1-methyl-4-phenylpyridinium and 6-hydroxydopamine on cellular bioenergetics and cell death. PLoS ONE. 2012;7:e44610. doi: 10.1371/journal.pone.0044610.
    1. Schneider L., Giordano S., Zelickson B. R., M S. J., G A. B., Ouyang X., Fineberg N., Darley-Usmar V. M., Zhang J. Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Radic. Biol. Med. 2011;51:2007–2017. doi: 10.1016/j.freeradbiomed.2011.08.030.
    1. Brand M. D., Nicholls D. G. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011;435:297–312. doi: 10.1042/BJ20110162.
    1. Kingsley-Hickman P. B., Sako E. Y., Ugurbil K., From A. H., Foker J. E. 31P NMR measurement of mitochondrial uncoupling in isolated rat hearts. J. Biol. Chem. 1990;265:1545–1550.
    1. Gong G., Liu J., Liang P., Guo T., Hu Q., Ochiai K., Hou M., Ye Y., Wu X., Mansoor A., et al. Oxidative capacity in failing hearts. Am. J. Physiol. Heart Circ. Physiol. 2003;285:H541–H548.
    1. Zelickson B. R., Benavides G. A., Johnson M. S., Chacko B. K., Venkatraman A., Landar A., Betancourt A. M., Bailey S. M., Darley-Usmar V. M. Nitric oxide and hypoxia exacerbate alcohol-induced mitochondrial dysfunction in hepatocytes. Biochim. Biophys. Acta. 2011;1807:1573–1582. doi: 10.1016/j.bbabio.2011.09.011.
    1. Sansbury B. E., Jones S. P., Riggs D. W., Darley-Usmar V. M., Hill B. G. Bioenergetic function in cardiovascular cells: the importance of the reserve capacity and its biological regulation. Chem. Biol. Interact. 2011;191:288–295. doi: 10.1016/j.cbi.2010.12.002.
    1. Hill B. G., Dranka B. P., Zou L., Chatham J. C., Darley-Usmar V. M. Importance of the bioenergetic reserve capacity in response to cardiomyocyte stress induced by 4-hydroxynonenal. Biochem. J. 2009;424:99–107. doi: 10.1042/BJ20090934.
    1. Tavakoli S., Zamora D., Ullevig S., Asmis R. Bioenergetic profiles diverge during macrophage polarization: implications for the interpretation of 18F-FDG PET imaging of atherosclerosis. J. Nucl. Med. 2013;54:1661–1667. doi: 10.2967/jnumed.112.119099.
    1. van der Windt G. J., Everts B., Chang C. H., Curtis J. D., Freitas T. C., Amiel E., Pearce E. J., Pearce E. L. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012;36:68–78. doi: 10.1016/j.immuni.2011.12.007.
    1. Dodson M., Liang Q., Johnson M. S., Redmann M., Fineberg N., Darley-Usmar V. M., Zhang J. Inhibition of glycolysis attenuates 4-hydroxynonenal-dependent autophagy and exacerbates apoptosis in differentiated SH-SY5Y neuroblastoma cells. Autophagy. 2013;9:1996–2008. doi: 10.4161/auto.26094.
    1. Perrin S., Cremer J., Roll P., Faucher O., Menard A., Reynes J., Dellamonica P., Naqvi A., Micallef J., Jouve E., et al. HIV-1 infection and first line ART induced differential responses in mitochondria from blood lymphocytes and monocytes: the ANRS EP45 “Aging” study. PLoS ONE. 2012;7:e41129. doi: 10.1371/journal.pone.0041129.
    1. Widlansky M. E., Wang J., Shenouda S. M., Hagen T. M., Smith A. R., Kizhakekuttu T. J., Kluge M. A., Weihrauch D., Gutterman D. D., Vita J. A. Altered mitochondrial membrane potential, mass, and morphology in the mononuclear cells of humans with type 2 diabetes. Transl. Res. 2010;156:15–25. doi: 10.1016/j.trsl.2010.04.001.
    1. Wynn T. A., Chawla A., Pollard J. W. Macrophage biology in development, homeostasis and disease. Nature. 2013;496:445–455. doi: 10.1038/nature12034.
    1. Tugal D., Liao X., Jain M. K. Transcriptional control of macrophage polarization. Arterioscler. Thromb. Vasc. Biol. 2013;33:1135–1144. doi: 10.1161/ATVBAHA.113.301453.
    1. Zhou D., Huang C., Lin Z., Zhan S., Kong L., Fang C., Li J. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell. Signal. 2013;26:192–197. doi: 10.1016/j.cellsig.2013.11.004.
    1. Krauss S., Brand M. D., Buttgereit F. Signaling takes a breath–new quantitative perspectives on bioenergetics and signal transduction. Immunity. 2001;15:497–502. doi: 10.1016/S1074-7613(01)00205-9.
    1. Pearce E. L., Poffenberger M. C., Chang C. H., Jones R. G. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342:1242454. doi: 10.1126/science.1242454.
    1. Pearce E. L., Pearce E. J. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38:633–643. doi: 10.1016/j.immuni.2013.04.005.
    1. van der Windt G. J., Pearce E. L. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 2012;249:27–42. doi: 10.1111/j.1600-065X.2012.01150.x.
    1. Macintyre A. N., Rathmell J. C. Activated lymphocytes as a metabolic model for carcinogenesis. Cancer Metab. 2013;1:5. doi: 10.1186/2049-3002-1-5.
    1. Reuter H., Gross R. Platelet metabolism. Suppl. Thromb. Haemost. 1978;63:87–95.
    1. Medina-Gomez G. Mitochondria and endocrine function of adipose tissue. Best Pract. Res. Clin. Endocrinol. Metab. 2012;26:791–804. doi: 10.1016/j.beem.2012.06.002.
    1. Patel P. S., Buras E. D., Balasubramanyam A. The role of the immune system in obesity and insulin resistance. J. Obes. 2013;2013:616193.
    1. Fetterman J. L., Pompilius M., Westbrook D. G., Uyeminami D., Brown J., Pinkerton K. E., Ballinger S. W. Developmental exposure to second-hand smoke increases adult atherogenesis and alters mitochondrial DNA copy number and deletions in apoE−/− mice. PLoS ONE. 2013;8:e66835. doi: 10.1371/journal.pone.0066835.
    1. Krzywanski D. M., Moellering D. R., Fetterman J. L., Dunham-Snary K. J., Sammy M. J., Ballinger S. W. The mitochondrial paradigm for cardiovascular disease susceptibility and cellular function: a complementary concept to Mendelian genetics. Lab. Invest. 2011;91:1122–1135. doi: 10.1038/labinvest.2011.95.
    1. Cakir Y., Yang Z., Knight C. A., Pompilius M., Westbrook D., Bailey S. M., Pinkerton K. E., Ballinger S. W. Effect of alcohol and tobacco smoke on mtDNA damage and atherogenesis. Free Radic. Biol. Med. 2007;43:1279–1288. doi: 10.1016/j.freeradbiomed.2007.07.015.
    1. Wallace D. C. Bioenergetic Origins of Complexity and Disease. Cold Spring Harb. Symp. Quant. Biol. 2011;76:1–16. doi: 10.1101/sqb.2011.76.010462.
    1. Wallace D. C. Mitochondrial DNA mutations in disease and aging. Environ. Mol. Mutagen. 2010;51:440–450.
    1. Dunham-Snary K. J., Ballinger S. W. Mitochondrial genetics and obesity: evolutionary adaptation and contemporary disease susceptibility. Free Radic. Biol. Med. 2013;65:1229–1237. doi: 10.1016/j.freeradbiomed.2013.09.007.

Source: PubMed

3
Prenumerera