Clinical performance of stem cell therapy in patients with acute-on-chronic liver failure: a systematic review and meta-analysis

Ran Xue, Qinghua Meng, Jinling Dong, Juan Li, Qinwei Yao, Yueke Zhu, Hongwei Yu, Ran Xue, Qinghua Meng, Jinling Dong, Juan Li, Qinwei Yao, Yueke Zhu, Hongwei Yu

Abstract

Background: Stem cell therapy has been applied in the treatment of acute-on-chronic liver failure (ACLF). However, its clinical efficiency is still debatable. The aim of this systematic review and meta-analysis is to evaluate the clinical efficiency of stem cell therapy in the treatment of ACLF.

Methods: The Cochrane Library, OVID, EMBASE, and PUBMED were searched to December 2017. Both randomized and non-randomized studies, assessing stem cell therapy in patients with ACLF, were included. The outcome measures were total bilirubin (TBIL), alanine transaminase (ALT), international normalized ratio (INR), albumin (ALB), and the model for end-stage liver disease (MELD) score. The quality of evidence was assessed by GRADEpro.

Results: Four randomized controlled trials and six non-randomized controlled trials were included. The TBIL levels significantly decreased at 1-, 3-, 12-month after the stem cell therapy (p = 0.0008; p = 0.04; p = 0.007). The ALT levels decreased significantly compared with the control group in the short-term (p < 0.00001). There was no obvious change in the INR level compared with the control groups (p = 0.64). The ALB levels increased markedly as compared with the control groups (p < 0.0001). The significant difference can be found in MELD score between stem cell therapy and control groups (p = 0.008). Further subgroup analysis for 3-month clinical performance according to the stem cell types have also been performed.

Conclusion: This study suggests that the clinical outcomes of stem cell therapy were satisfied in patients with ACLF in the short-term. MSCs may be better than BM-MNCs in the stem cells transplantation of ACLF. However, more attention should focus on clinical trials in large-volume centers.

Keywords: Acute-on-chronic liver failure; Clinical performance; Stem cell therapy.

Figures

Fig. 1
Fig. 1
Flow diagram of the article selection process
Fig. 2
Fig. 2
Forest plot of the ALB level during follow up
Fig. 3
Fig. 3
Forest plot of the INR level during follow up
Fig. 4
Fig. 4
Forest plot of the TBIL level during follow up
Fig. 5
Fig. 5
Forest plot of the ALT level during follow up
Fig. 6
Fig. 6
Forest plot of the MELD score during follow up
Fig. 7
Fig. 7
Futher subgroup analysis for 3-month clinical performance according to the stem cell types. a Forest plot of the ALB during 3 months. b Forest plot of the ALT during 3 months. c Forest plot of the INR during 3 months. d Forest plot of the TBIL during 3 months. e Forest plot of MELD scores during 3 months

References

    1. Bernal W, Jalan R, Quaglia A, Simpson K, Wendon J, Burroughs A. Acute-on-chronic liver failure. Lancet. 2015;10003:1576–1587. doi: 10.1016/S0140-6736(15)00309-8.
    1. Liu Q, Liu Z, Wang T, Wang Q, Shi X, Dao W. Characteristics of acute and sub-acute liver failure in China: nomination, classification and interval. J Gastroenterol Hepatol. 2007;12:2101–2106. doi: 10.1111/j.1440-1746.2006.04362.x.
    1. Sarin SK, Kumar A, Almeida JA, et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacifc association for the study of the liver (APASL) Hepatol Int. 2009;3(1):269–282. doi: 10.1007/s12072-008-9106-x.
    1. Asrani SK, Simonetto DA, Kamath PS. Acute-on-chronic liver failure. Clin Gastroenterol Hepatol. 2015;13(12):2128–2139. doi: 10.1016/j.cgh.2015.07.008.
    1. Peng L, Xie DY, Lin BL, et al. Autologous bone marrow mesenchymal stem cell therapy in liver failure patients caused by hepatitis B: short-term and long-term outcomes. Hepatology. 2011;54(3):820–828. doi: 10.1002/hep.24434.
    1. Mohamadnejad M, Alimoghaddam K, Bagheri M, et al. Randomized placebo-controlled trial of mesenchymal stem cell therapy in decompensated cirrhosis. Liver Int. 2013;33:1490–1496.
    1. Spahr L, Chalandon Y, Terraz S, et al. Autologous bone marrow mononuclear cell therapy in patients with decompensated alcoholic liver disease: a randomized controlled trial. PLoS ONE. 2013;8:e53719. doi: 10.1371/journal.pone.0053719.
    1. Bai YQ, Yang YX, Yang YG, et al. Outcomes of autologous bone marrow mononuclear cell therapy in decompensated liver cirrhosis. World J Gastroenterol. 2014;20:8660–8666. doi: 10.3748/wjg.v20.i26.8660.
    1. Terai S, Sakaida I, Yamamoto N, et al. An in vivo model for monitoring trans-differentiation of bone marrow cells into functional hepatocytes. J Biochem. 2003;134:551–558. doi: 10.1093/jb/mvg173.
    1. Peng L, Li H, Gu L, Peng XM, Huang YS, Gao ZL. Comparison of biological characteristics of marrow mesenchymal stem cells in hepatitis B patients and normal adults. World J Gastroenterol. 2007;13(11):1743–1746. doi: 10.3748/wjg.v13.i11.1743.
    1. Zeng X, Zhang Y, Kwong JS, et al. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med. 2015;8(1):2–10. doi: 10.1111/jebm.12141.
    1. Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–394. doi: 10.1016/j.jclinepi.2010.04.026.
    1. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13. doi: 10.1186/1471-2288-5-13.
    1. Zheng MH, Wu SJ, Shi KQ, et al. Conditional survival estimate of acute-on-chronic hepatitis B liver failure: a dynamic prediction based on a multicenter cohort. Oncotarget. 2015;6(27):23261–23271. doi: 10.18632/oncotarget.4666.
    1. Connick P, Kolappan M, Crawley C, et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open label phase 2a proof-of-concept study. Lancet Neurol. 2012;11(2):150–156. doi: 10.1016/S1474-4422(11)70305-2.
    1. Jiang R, Han Z, Zhuo G, et al. Therapy of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study. Front Med. 2011;5(1):94–100. doi: 10.1007/s11684-011-0116-z.
    1. Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895–904. doi: 10.1016/S0140-6736(12)60195-0.
    1. De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med. 2012;12(5):574–591. doi: 10.2174/156652412800619950.
    1. Gao F, Chiu SM, Motan DA, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7:e2062. doi: 10.1038/cddis.2015.327.
    1. Kaundal U, Bagai U, Rakha A. Immunomodulatory plasticity of mesenchymal stem cells: a potential key to successful solid organ transplantation. J Transl Med. 2018;16(1):31. doi: 10.1186/s12967-018-1403-0.
    1. Huo TI, Wu JC, Lin HC, et al. Evaluation of the increase in model for end-stage liver disease (DeltaMELD) score over time as a prognostic predictor in patients with advanced cirrhosis: risk factor analysis and comparison with initial MELD and Child-Turcotte-Pugh score. J Hepatol. 2005;42:826–832. doi: 10.1016/j.jhep.2005.01.019.
    1. Shi M, Zhang Z, Xu R, et al. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl Med. 2012;1(10):725–731. doi: 10.5966/sctm.2012-0034.
    1. Zhang Z, Lin H, Shi M, et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J Gastroenterol Hepatol. 2012;27(s2):112. doi: 10.1111/j.1440-1746.2011.07024.x.
    1. Bai YQ, Yang YX, Yang YG, et al. Outcomes of autologous bone marrow mononuclear cell transplantation in decompensated liver cirrhosis. World J Gastroenterol. 2014;20(26):8660–8666. doi: 10.3748/wjg.v20.i26.8660.
    1. Deng Q, Cai T, Zhang S, et al. Autologous peripheral blood stem cell transplantation improves portal hemodynamics in patients with hepatitis B virus-related decompensated cirrhosis. Hepat Mon. 2015;15(12):e32498. doi: 10.5812/hepatmon.32498.
    1. Mohamadnejad M, Vosough M, Moossavi S, et al. Intraportal infusion of bone marrow mononuclear or CD133+ cells in patients with decompensated cirrhosis: a double-blind randomized controlled trial. Stem Cells Transl Med. 2015;5(1):87–94. doi: 10.5966/sctm.2015-0004.
    1. Lin BL, Chen JF, Qiu WH, et al. Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: a randomized controlled trial. Hepatology. 2017;66(1):209–219. doi: 10.1002/hep.29189.

Source: PubMed

3
Prenumerera