PAM50 assay and the three-gene model for identifying the major and clinically relevant molecular subtypes of breast cancer

A Prat, J S Parker, C Fan, C M Perou, A Prat, J S Parker, C Fan, C M Perou

Abstract

It has recently been proposed that a three-gene model (SCMGENE) that measures ESR1, ERBB2, and AURKA identifies the major breast cancer intrinsic subtypes and provides robust discrimination for clinical use in a manner very similar to a 50-gene subtype predictor (PAM50). However, the clinical relevance of both predictors was not fully explored, which is needed given that a ~30 % discordance rate between these two predictors was observed. Using the same datasets and subtype calls provided by Haibe-Kains and colleagues, we compared the SCMGENE assignments and the research-based PAM50 assignments in terms of their ability to (1) predict patient outcome, (2) predict pathological complete response (pCR) after anthracycline/taxane-based chemotherapy, and (3) capture the main biological diversity displayed by all genes from a microarray. In terms of survival predictions, both assays provided independent prognostic information from each other and beyond the data provided by standard clinical-pathological variables; however, the amount of prognostic information was found to be significantly greater with the PAM50 assay than the SCMGENE assay. In terms of chemotherapy response, the PAM50 assay was the only assay to provide independent predictive information of pCR in multivariate models. Finally, compared to the SCMGENE predictor, the PAM50 assay explained a significantly greater amount of gene expression diversity as captured by the two main principal components of the breast cancer microarray data. Our results show that classification of the major and clinically relevant molecular subtypes of breast cancer are best captured using larger gene panels.

Figures

Fig. 1
Fig. 1
Distant metastasis-free survival likelihood ratio statistics of subtypes defined by the PAM50 or the SCMGENE predictors, after accounting for clinical–pathological variables (age at diagnosis, nodal status, treatment and tumor size). Models were first conditioned on one predictor and the clinical–pathological variables, and then the significance of the other was tested. (AB) Entire combined dataset (n = 2,008), (CD) subset of patients that did not receive adjuvant systemic therapy (n = 994), (EF) subset of patients with HR+ tumors that received adjuvant tamoxifen-only (n = 491). Similar results are obtained if a term for dataset is included in the model
Fig. 2
Fig. 2
PC1 and PC2 loading plots of 3,316 samples using 18 Affymetrix and Agilent-based datasets taken from Haibe-Kains et al. [6]. Samples colored based on the a SCMGENE calls, or b PAM50 subtype calls. PC1 and PC2 R2 values obtained from simple linear regression models are shown. Only datasets with >50 % and <90 % ER+ tumors were included in this analysis. Blue Luminal A or ER+/HER2−/Low Proliferative, light blue Luminal B or ER+/HER2−/High Proliferative, pink HER2-enriched or HER2+, red Basal-like or ER−/HER2−, green normal-like, black normal breast samples (only present in the UNC337 dataset [29]). For the UNC337 dataset, we colored samples based on the subtype calls obtained after median centering as shown in Supplemental Fig. 1

References

    1. Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–1167. doi: 10.1200/JCO.2008.18.1370.
    1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–752. doi: 10.1038/35021093.
    1. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100:8418–8423. doi: 10.1073/pnas.0932692100.
    1. Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol Oncol. 2011;5:5–23. doi: 10.1016/j.molonc.2010.11.003.
    1. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn H-J, Members P Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011;22:1736–1747. doi: 10.1093/annonc/mdr304.
    1. Haibe-Kains B, Desmedt C, Loi S, Culhane AC, Bontempi G, Quackenbush J, Sotiriou C. A three-gene model to robustly identify breast cancer molecular subtypes. J Natl Cancer Inst. 2012;104:311–325. doi: 10.1093/jnci/djr545.
    1. Prat A, Ellis M, Perou C. Practical implications of gene-expression-based assays for breast oncologists. Nat Rev Clin Oncol. 2011;6:48–57. doi: 10.1038/nrclinonc.2011.178.
    1. Chin K, DeVries S, Fridlyand J, Spellman P, Roydasqupta R, Kuo W, Lapuk A, Neve R, Quian Z, Ryder T, et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell. 2006;10:529–541. doi: 10.1016/j.ccr.2006.10.009.
    1. Bos PD, Zhang XHF, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459(7249):1005–1009. doi: 10.1038/nature08021.
    1. Li Q, Eklund AC, Juul N, Haibe-Kains B, Workman CT, Richardson AL, Szallasi Z, Swanton C. Minimising immunohistochemical false negative ER classification using a complementary 23 gene expression signature of ER status. PLoS ONE. 2010;5(12):e15031. doi: 10.1371/journal.pone.0015031.
    1. Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H, Lehr H-A, Hengstler JG, Kolbl H, Gehrmann M. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res. 2008;68(13):5405–5413. doi: 10.1158/0008-5472.CAN-07-5206.
    1. Symmans WF, Hatzis C, Sotiriou C, Andre F, Peintinger F, Regitnig P, Daxenbichler G, Desmedt C, Domont J, Marth C, et al. Genomic index of sensitivity to endocrine therapy for breast cancer. J Clin Oncol. 2010;28:4111–4119. doi: 10.1200/JCO.2010.28.4273.
    1. Minn A, Gupta G, Siegel P, Bos P, Shu W, Giri D, Viale A, Oshen A, Gerald W, Massague J. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436:518–524. doi: 10.1038/nature03799.
    1. Vijver MJ, He YD, van ‘t Veer LJ, Dai H, Hart AAM, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009. doi: 10.1056/NEJMoa021967.
    1. Loi S, Haibe-Kains B, Desmedt C, Wirapati P, Lallemand F, Tutt A, Gillet C, Ellis P, Ryder K, Reid J, et al. Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics. 2008;9(1):239. doi: 10.1186/1471-2164-9-239.
    1. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, Viale G, Delorenzi M, Zhang Y, d’Assignies MS, et al. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res. 2007;13:3207–3214. doi: 10.1158/1078-0432.CCR-06-2765.
    1. Korkola J, Blaveri E, DeVries S, Moore D, Hwang ES, Chen Y-Y, Estep A, Chew K, Jensen R, Waldman F. Identification of a robust gene signature that predicts breast cancer outcome in independent data sets. BMC Cancer. 2007;7(1):61. doi: 10.1186/1471-2407-7-61.
    1. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-Kains B, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98:262–272. doi: 10.1093/jnci/djj052.
    1. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet. 2005;365:671–679.
    1. Zhang Y, Sieuwerts A, McGreevy M, Casey G, Cufer T, Paradiso A, Harbeck N, Span P, Hicks D, Crowe J, et al. The 76-gene signature defines high-risk patients that benefit from adjuvant tamoxifen therapy. Breast Cancer Res Treat. 2009;116(2):303–309. doi: 10.1007/s10549-008-0183-2.
    1. Popovici V, Chen W, Gallas B, Hatzis C, Shi W, Samuelson F, Nikolsky Y, Tsyganova M, Ishkin A, Nikolskaya T. Effect of training-sample size and classification difficulty on the accuracy of genomic predictors. Breast Cancer Res. 2010;12(1):R5. doi: 10.1186/bcr2468.
    1. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi M-B, Harpole D, Lancaster JM, Berchuck A, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439(7074):353. doi: 10.1038/nature04296.
    1. Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, MacGrogan G, Bergh J, Cameron D, Goldstein D, et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005;24(29):4660–4671. doi: 10.1038/sj.onc.1208561.
    1. EXPO Project of the International Genomics Consortium (IGC). . Accessed 20 May 2012
    1. Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, Horng CF, Bild A, Iversen ES, Liao M, Chen CM. Gene expression predictors of breast cancer outcomes. Lancet. 2003;361(9369):1590–1596. doi: 10.1016/S0140-6736(03)13308-9.
    1. Hess KR, Anderson K, Symmans WF, Valero V, Ibrahim N, Mejia JA, Booser D, Theriault RL, Buzdar AU, Dempsey PJ, et al. Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol. 2006;24(26):4236–4244. doi: 10.1200/JCO.2006.05.6861.
    1. Dedeurwaerder S, Desmedt C, Calonne E, Singhal SK, Haibe-Kains B, Defrance M, Michiels S, Volkmar M, Deplus R, Luciani J, et al. DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol Med. 2011;3(12):726–741. doi: 10.1002/emmm.201100801.
    1. Pawitan Y, Bjohle J, Amler L, Borg AL, Egyhazi S, Hall P, Han X, Holmberg L, Huang F, Klaar S, et al. Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res. 2005;7:R953–R964. doi: 10.1186/bcr1325.
    1. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68. doi: 10.1186/bcr2635.
    1. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan Y, Hall P, Klaar S, Liu ET, et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA. 2005;102:13550–13555. doi: 10.1073/pnas.0506230102.
    1. Perou C, Parker J, Prat A, Ellis M, Bernard P. Clinical implementation of the intrinsic subtypes of breast cancer. Lancet Oncol. 2010;11(8):718–719. doi: 10.1016/S1470-2045(10)70176-5.
    1. Lusa L, McShane LM, Reid JF, De Cecco L, Ambrogi F, Biganzoli E, Gariboldi M, Pierotti MA. Challenges in projecting clustering results across gene expression profiling datasets. J Natl Cancer Inst. 2007;99(22):1715–1723. doi: 10.1093/jnci/djm216.

Source: PubMed

3
Prenumerera