Hormonal responses to non-nutritive sweeteners in water and diet soda

Allison C Sylvetsky, Rebecca J Brown, Jenny E Blau, Mary Walter, Kristina I Rother, Allison C Sylvetsky, Rebecca J Brown, Jenny E Blau, Mary Walter, Kristina I Rother

Abstract

Background: Non-nutritive sweeteners (NNS), especially in form of diet soda, have been linked to metabolic derangements (e.g. obesity and diabetes) in epidemiologic studies. We aimed to test acute metabolic effects of NNS in isolation (water or seltzer) and in diet sodas.

Methods: We conducted a four-period, cross-over study at the National Institutes of Health Clinical Center (Bethesda, Maryland). Thirty healthy adults consumed 355 mL water with 0 mg, 68 mg, 170 mg, and 250 mg sucralose, and 31 individuals consumed 355 mL caffeine-free Diet Rite Cola™, Diet Mountain Dew™ (18 mg sucralose, 18 mg acesulfame-potassium, 57 mg aspartame), and seltzer water with NNS (68 mg sucralose and 41 mg acesulfame-potassium, equivalent to Diet Rite Cola™) in randomized order, prior to oral glucose tolerance tests. Blood samples were collected serially for 130 min. Measures included GLP-1, GIP, glucose, insulin, C-peptide, glucose absorption, gastric emptying, and subjective hunger and satiety ratings.

Results: Diet sodas augmented active GLP-1 (Diet Rite Cola™ vs. seltzer water, AUC, p = 0.039; Diet Mountain Dew™ vs. seltzer water, AUC, p = 0.07), but gastric emptying and satiety were unaffected. Insulin concentrations were nominally higher following all NNS conditions without altering glycemia. Sucralose alone (at any concentration) did not affect metabolic outcomes.

Conclusions: Diet sodas but not NNS in water augmented GLP-1 responses to oral glucose. Whether the trends toward higher insulin concentrations after NNS are of clinical importance remains to be determined. Our findings emphasize the need to test metabolic effects of NNS after chronic consumption.

Trial registration: The data for this manuscript were gathered from clinical trial #NCT01200940.

Keywords: Acesulfame-potassium; Diet soda; Gut peptides; Non-nutritive sweetener; Sucralose.

Figures

Fig. 1
Fig. 1
Following a screening visit, subjects were randomized to consume either 355 mL water mixed with a sucralose dose of 0 mg (plain water control), 68 mg, 170 mg, or 250 mg (study arm 1) or 355 mL seltzer water (control), 355 mL caffeine-free Diet Rite Cola™ sweetened with 68 mg sucralose and 41 mg acesulfame-potassium, 355 mL caffeine-free Diet Mountain Dew™ sweetened with 18 mg sucralose, 18 mg acesulfame-potassium and 57 mg aspartame or 68 mg sucralose and 41 mg acesulfame-potassium in 355 mL of seltzer water (study arm 2) prior to an OGTT
Fig. 2
Fig. 2
Serial data from OGTTs. Active glucagon-like-peptide 1 (GLP-1) (a) and gastric inhibitory peptide (GIP) (b) are shown after ingestion of either Diet Rite Cola™ ( with dashed line), Diet Mountain Dew™ ( with dotted line), 68 mg sucralose and 41 mg acesulfame-potassium in seltzer water ( with dashed and dotted line) or seltzer water ( with solid line) 10 min prior to a 75 g oral glucose load. Active GLP-1 was augmented in all three NNS conditions vs. the seltzer water condition. All data are expressed as mean ± standard error
Fig. 3
Fig. 3
Serial data from OGTTs. Glucose (a), insulin (b), and C-peptide (c) are shown after ingestion of Diet Rite Cola™ ( with dashed line), Diet Mountain Dew™ ( with dotted line), 68 mg sucralose and 41 mg acesulfame-potassium ( with dashed and dotted line) or seltzer water ( with solid line). Insulin AUCs were 22 to 25% higher following all three NNS conditions vs. seltzer water (not statistically significant). All data are expressed as mean ± standard error

References

    1. Fowler SP, Williams K, Resendez RG, Hunt KJ, Hazuda HP, Stern MP. Fueling the obesity epidemic? Artificially sweetened beverage use and long-term weight gain. Obesity (Silver Spring) 2008;16:1894–1900. doi: 10.1038/oby.2008.284.
    1. Fowler SP, Williams K, Hazuda HP. Diet Soda Intake Is Associated with Long-Term Increases in Waist Circumference in a Biethnic Cohort of Older Adults: The San Antonio Longitudinal Study of Aging. J Am Geriatr Soc. 2015;63:708–715. doi: 10.1111/jgs.13376.
    1. Dhingra R, Sullivan L, Jacques PF, Wang TJ, Fox CS, Meigs JB, D’Agostino RB, Gaziano JM, Vasan RS. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation. 2007;116:480–488. doi: 10.1161/CIRCULATIONAHA.107.689935.
    1. Fung TT, Malik V, Rexrode KM, Manson JE, Willett WC, Hu FB. Sweetened beverage consumption and risk of coronary heart disease in women. Am J Clin Nutr. 2009;89:1037–1042. doi: 10.3945/ajcn.2008.27140.
    1. Imamura F, O’Connor L, Ye Z, Mursu J, Hayashino Y, Bhupathiraju SN, Forouhi NG. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ. 2015;351:h3576. doi: 10.1136/bmj.h3576.
    1. O’Connor L, Imamura F, Lentjes MA, Khaw KT, Wareham NJ, Forouhi NG. Prospective associations and population impact of sweet beverage intake and type 2 diabetes, and effects of substitutions with alternative beverages. Diabetologia. 2015;58:1474–1483. doi: 10.1007/s00125-015-3572-1.
    1. Ma J, Fox CS, Jacques PF, Speliotes EK, Hoffmann U, Smith CE, Saltzman E, McKeown NM. Sugar-sweetened beverage, diet soda, and fatty liver disease in the Framingham Heart Study cohorts. J Hepatol. 2015;63:462–469. doi: 10.1016/j.jhep.2015.03.032.
    1. Ebbeling CB, Feldman HA, Chomitz VR, Antonelli TA, Gortmaker SL, Osganian SK, Ludwig DS. A randomized trial of sugar-sweetened beverages and adolescent body weight. N Engl J Med. 2012;367:1407–1416. doi: 10.1056/NEJMoa1203388.
    1. de Ruyter JC, Olthof MR, Seidell JC, Katan MB. A trial of sugar-free or sugar-sweetened beverages and body weight in children. N Engl J Med. 2012;367:1397–1406. doi: 10.1056/NEJMoa1203034.
    1. Rogers PJ, Hogenkamp PS, de Graaf C, Higgs S, Lluch A, Ness AR, Penfold C, Perry R, Putz P, Yeomans MR, Mela DJ. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int J Obes (Lond) 2016;40:381–394. doi: 10.1038/ijo.2015.177.
    1. Mattes RD. Low calorie sweeteners: Science and controversy: Conference proceedings. Physiol Behav. 2016;164:429–431. doi: 10.1016/j.physbeh.2016.01.005.
    1. Pepino MY, Bourne C. Non-nutritive sweeteners, energy balance, and glucose homeostasis. Curr Opin Clin Nutr Metab Care. 2011;14:391–395. doi: 10.1097/MCO.0b013e3283468e7e.
    1. Swithers SE. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol Metab. 2013;24:431–441. doi: 10.1016/j.tem.2013.05.005.
    1. Frank GK, Oberndorfer TA, Simmons AN, Paulus MP, Fudge JL, Yang TT, Kaye WH. Sucrose activates human taste pathways differently from artificial sweetener. Neuroimage. 2008;39:1559–1569. doi: 10.1016/j.neuroimage.2007.10.061.
    1. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181–186.
    1. Abou-Donia MB, El-Masry EM, Abdel-Rahman AA, McLendon RE, Schiffman SS. Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats. J Toxicol Environ Health A. 2008;71:1415–1429. doi: 10.1080/15287390802328630.
    1. Palmnas MS, Cowan TE, Bomhof MR, Su J, Reimer RA, Vogel HJ, Hittel DS, Shearer J. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS One. 2014;9:e109841. doi: 10.1371/journal.pone.0109841.
    1. Simon BR, Parlee SD, Learman BS, Mori H, Scheller EL, Cawthorn WP, Ning X, Gallagher K, Tyrberg B, Assadi-Porter FM, et al. Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors. J Biol Chem. 2013;288:32475–32489. doi: 10.1074/jbc.M113.514034.
    1. Nakagawa Y, Nagasawa M, Yamada S, Hara A, Mogami H, Nikolaev VO, Lohse MJ, Shigemura N, Ninomiya Y, Kojima I. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS One. 2009;4:e5106. doi: 10.1371/journal.pone.0005106.
    1. Corkey BE. Banting lecture 2011: hyperinsulinemia: cause or consequence? Diabetes. 2012;61:4–13. doi: 10.2337/db11-1483.
    1. Pepino MY, Tiemann CD, Patterson BW, Wice BM, Klein S. Sucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes Care. 2013;36:2530–2535. doi: 10.2337/dc12-2221.
    1. Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP. T1R3 and gustducin in gut sense sugars to regulate expression of Na + −glucose cotransporter 1. Proc Natl Acad Sci U S A. 2007;104:15075–15080. doi: 10.1073/pnas.0706678104.
    1. Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, Kim HH, Xu X, Chan SL, Juhaszova M, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A. 2007;104:15069–15074. doi: 10.1073/pnas.0706890104.
    1. Kojima I, Nakagawa Y. The Role of the Sweet Taste Receptor in Enteroendocrine Cells and Pancreatic beta-Cells. Diabetes Metab J. 2011;35:451–457. doi: 10.4093/dmj.2011.35.5.451.
    1. Brown RJ, Walter M, Rother KI. Ingestion of diet soda before a glucose load augments glucagon-like peptide-1 secretion. Diabetes Care. 2009;32:2184–2186. doi: 10.2337/dc09-1185.
    1. Brown RJ, Walter M, Rother KI. Effects of diet soda on gut hormones in youths with diabetes. Diabetes Care. 2012;35:959–964. doi: 10.2337/dc11-2424.
    1. Sigalet DL, Lam V, Boctor D. The assessment, and glucagon-like peptide-2 modulation, of intestinal absorption and function. Semin Pediatr Surg. 2010;19:44–49. doi: 10.1053/j.sempedsurg.2009.11.005.
    1. Clements JA, Heading RC, Nimmo WS, Prescott LF. Kinetics of acetaminophen absorption and gastric emptying in man. Clin Pharmacol Ther. 1978;24:420–431. doi: 10.1002/cpt1978244420.
    1. Sylvetsky AC, Welsh JA, Brown RJ, Vos MB. Low-calorie sweetener consumption is increasing in the United States. Am J Clin Nutr. 2012;96:640–646. doi: 10.3945/ajcn.112.034751.
    1. Dotson CD, Zhang L, Xu H, Shin YK, Vigues S, Ott SH, Elson AE, Choi HJ, Shaw H, Egan JM, et al. Bitter taste receptors influence glucose homeostasis. PLoS One. 2008;3:e3974. doi: 10.1371/journal.pone.0003974.
    1. Holst JJ. Treatment of type 2 diabetes mellitus with agonists of the GLP-1 receptor or DPP-IV inhibitors. Expert Opin Emerg Drugs. 2004;9:155–166. doi: 10.1517/14728214.9.1.155.
    1. Sartor F, Donaldson LF, Markland DA, Loveday H, Jackson MJ, Kubis HP. Taste perception and implicit attitude toward sweet related to body mass index and soft drink supplementation. Appetite. 2011;57:237–246. doi: 10.1016/j.appet.2011.05.107.
    1. Burge JC, Schaumburg JZ, Choban PS, DiSilvestro RA, Flancbaum L. Changes in patients’ taste acuity after Roux-en-Y gastric bypass for clinically severe obesity. J Am Diet Assoc. 1995;95:666–670. doi: 10.1016/S0002-8223(95)00182-4.
    1. Mennella JA, Pepino MY, Reed DR. Genetic and environmental determinants of bitter perception and sweet preferences. Pediatrics. 2005;115:e216–e222. doi: 10.1542/peds.2004-1582.
    1. Fushan AA, Simons CT, Slack JP, Manichaikul A, Drayna D. Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Curr Biol. 2009;19:1288–1293. doi: 10.1016/j.cub.2009.06.015.

Source: PubMed

3
Prenumerera