Revisiting the immune trypanolysis test to optimise epidemiological surveillance and control of sleeping sickness in West Africa

Vincent Jamonneau, Bruno Bucheton, Jacques Kaboré, Hamidou Ilboudo, Oumou Camara, Fabrice Courtin, Philippe Solano, Dramane Kaba, Roger Kambire, Kouakou Lingue, Mamadou Camara, Rudy Baelmans, Veerle Lejon, Philippe Büscher, Vincent Jamonneau, Bruno Bucheton, Jacques Kaboré, Hamidou Ilboudo, Oumou Camara, Fabrice Courtin, Philippe Solano, Dramane Kaba, Roger Kambire, Kouakou Lingue, Mamadou Camara, Rudy Baelmans, Veerle Lejon, Philippe Büscher

Abstract

Background: Because of its high sensitivity and its ease of use in the field, the card agglutination test for trypanosomiasis (CATT) is widely used for mass screening of sleeping sickness. However, the CATT exhibits false-positive results (i) raising the question of whether CATT-positive subjects who are negative in parasitology are truly exposed to infection and (ii) making it difficult to evaluate whether Trypanosoma brucei (T.b.) gambiense is still circulating in areas of low endemicity. The objective of this study was to assess the value of the immune trypanolysis test (TL) in characterising the HAT status of CATT-positive subjects and to monitor HAT elimination in West Africa.

Methodology/principal findings: TL was performed on plasma collected from CATT-positive persons identified within medical surveys in several West African HAT foci in Guinea, Côte d'Ivoire and Burkina Faso with diverse epidemiological statuses (active, latent, or historical). All HAT cases were TL+. All subjects living in a nonendemic area were TL-. CATT prevalence was not correlated with HAT prevalence in the study areas, whereas a significant correlation was found using TL.

Conclusion and significance: TL appears to be a marker for contact with T.b. gambiense. TL can be a tool (i) at an individual level to identify nonparasitologically confirmed CATT-positive subjects as well as those who had contact with T.b. gambiense and should be followed up, (ii) at a population level to identify priority areas for intervention, and (iii) in the context of HAT elimination to identify areas free of HAT.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1. Localisation of sampling areas.
Figure 1. Localisation of sampling areas.
Figure 2. Trypanolysis test is a marker…
Figure 2. Trypanolysis test is a marker of active HAT transmission.
South Western Burkina  =  Folonzo, Loropéni and Batié. The left Y-axis represents the prevalence of HAT (number of HAT cases/examined population) and SERO (number of subjects with CATT-P end titer ≥1/8 but no parasites detected/examined population). The right Y-axis represents the proportion of SERO individuals that were positive to the trypanolysis test.
Figure 3. Control strategies: use of trypanolysis…
Figure 3. Control strategies: use of trypanolysis test as a marker of T.b. gambiense transmission.
HAT  =  presence of HAT cases; No HAT  =  absence; SERO  =  presence of subjects with CATT-P end titer ≥1/8 but no parasites detected, No SERO  =  absence; TL+  =  positive in trypanolysis test; TL−  =  negative; * except for a special event, such as population movements, occurs.

References

    1. Burri C, Brun R. Human African trypanosomiasis. In: Cook GC, Zumla AI, editors. Manson's tropical diseases. Philiadelphia: Saunders; 2009. pp. 1307–1325.
    1. Simarro PP, Jannin J, Cattand P. Eliminating human African trypanosomiasis: Where do we stand and what comes next? PLoS Medicine. 2008;5:174–180.
    1. World Health Organization. Human African trypanosomiasis: number of cases drops to historically low level in 50 years. 2010. .
    1. Courtin F, Jamonneau V, Duvallet G, Garcia A, Coulibaly B, et al. Sleeping sickness in West Africa (1906-2006): changes in spatial repartition and lessons from the past. Trop Med Int Health. 2008;13:334–344.
    1. Cecchi G, Paone M, Franco JR, Fevre EM, Diarra A, et al. Towards the Atlas of human African trypanosomiasis. Int J Health Geogr. 2009;8:15.
    1. Djé NN, Miézan TW, N'Guessan P, Brika P, Doua F, et al. Distribution géographique des trypanosomés pris en charge en Côte d'Ivoire de 1993 à 2000. Bull Soc Pathol Exot Fil. 2002;95:359–361.
    1. Magnus E, Vervoort T, Van Meirvenne N. A card-agglutination test with stained trypanosomes (C.A.T.T.) for the serological diagnosis of T.b.gambiense trypanosomiasis. Ann Soc Belg Méd Trop. 1978;58:169–176.
    1. Semballa S, Okomo-Assoumou MC, Holzmuller P, Büscher P, Magez S, et al. Identification of a tryptophan-like epitope borne by the variable surface glycoprotein (VSG) of African trypanosomes. Exp Parasitol. 2007;115:173–180.
    1. Truc P, Lejon V, Magnus E, Jamonneau V, Nangouma A, et al. Evaluation of the micro-CATT, CATT/Trypanosoma brucei gambiense, and LATEX/T.b. gambiense methods for serodiagnosis and surveillance of human African trypanosomiasis in West and Central Africa. Bull World Health Organ. 2002;80:882–886.
    1. Simarro PP, Ruiz JA, Franco JR, Josenando T. Attitude towards CATT-positive individuals without parasitological conformation in the African trypanosomiasis (T.b. gambiense) focus of Quiçama (Angola). Trop Med Int Health. 1999;4:858–861.
    1. Garcia A, Jamonneau V, Magnus E, Laveissière C, Lejon V, et al. Follow-up of Card Agglutination Trypanosomiasis Test (CATT) positive but apparently aparasitemic individuals in Côte d'Ivoire: evidence for a complex and heterogeneous population. Trop Med Int Health. 2000;5:786–793.
    1. Garcia A, Courtin D, Solano P, Koffi M, Jamonneau V. Human African trypanosomiasis epidemiology, clinic and diagnosis: connecting parasite and host genetics. Trends in Parasitology. 2006;22:405–409.
    1. Koffi M, Solano P, Denizot M, Courtin D, Garcia A, et al. Aparasitemic serological suspects in Trypanosoma brucei gambiense human African trypanosomiasis: a potential human reservoir of parasites? Acta Trop. 2006;98:183–188.
    1. Chappuis F, Loutan L, Simarro P, Lejon V, Büscher P. Options for the field diagnosis of human African trypanosomiasis. Clin Microbiol Rev. 2005;18:133–146.
    1. Deborggraeve S, Büscher P. Molecular diagnostics for sleeping sickness: where's the benefit for the patient? Lancet Infect Dis. 2010;10:433–439.
    1. Pays E, Vanhamme L, Pérez-Morga D. Antigenic variation in Trypanosoma brucei: facts, challenges and mysteries. Curr Opin Microbiol. 2004;7:369–374.
    1. Stockdale C, Swiderski MR, Barry JD, McCulloch R. Antigenic variation in Trypanosoma brucei: joining the DOTs. PLoS Biology. 2008;6:e185.
    1. Van Meirvenne N. Antigenic variation in African trypanosomes. Med Trop Coop Svilup. 1987;3:98–99.
    1. Van Meirvenne N, Magnus E, Büscher P. Evaluation of variant specific trypanolysis tests for serodiagnosis of human infections with Trypanosoma brucei gambiense. Acta Trop. 1995;60:189–199.
    1. Camara M, Kaba D, Kagbadouno M, Sanon JR, Ouendeno F, et al. Human African trypanosomiasis in the mangrove forest in Guinea: epidemiological and clinical features in two adjacent areas. Méd Trop. 2005;65:155–161.
    1. Solano P, Kone A, Garcia A, Sane B, Michel V, et al. Role of patient travel in transmission of human African trypanosomiasis in a highly endemic area of the Ivory Coast. Méd Trop. 2003;63:577–582.
    1. Kaba D, Dje NN, Courtin F, Oke E, Koffi M, et al. The impact of war on the evolution of sleeping sickness in west-central Cote d'Ivoire. Trop Med Int Health. 2006;11:136–143.
    1. Rayaissé JB, Courtin F, Akoundjin M, Cesar J, Solano P. Influence de l′anthropisation sur la végétation locale et l′abondance des tsé-tsé au Sud du Burkina-Faso. Parasite. 2009;16:21–28.
    1. Dayo GK, Bengaly Z, Messad S, Bucheton B, Sidibe I, et al. Prevalence and incidence of bovine trypanosomiasis in an agro-pastoral area of southwestern Burkina Faso. Res Vet Sci. 2010;88:470–477.
    1. Courtin F, Sidibe I, Rouamba J, Jamonneau V, Gouro A, et al. Population growth and global warming: impacts on tsetse and trypanosomoses in West Africa. Parasite. 2009;16:3–10.
    1. Büscher P, Mumba Ngoyi D, Kaboré J, Lejon V, Robays J, et al. Improved models of mini anion exchange centrifugation technique (mAECT) and modified single centrifugation (MSC) for sleeping sickness diagnosis and staging. PLoS Negl Trop Dis. 2009;3:e471.
    1. Jamonneau V, Ravel S, Koffi M, Kaba D, Zeze DG, et al. Mixed infections of trypanosomes in tsetse and pigs and their epidemiological significance in a sleeping sickness focus of Côte d'Ivoire. Parasitology. 2004;129:693–702.
    1. Dukes P, Gibson WC, Gashumba JK, Hudson KM, Bromidge TJ, et al. Absence of the LiTat 1.3 (CATT antigen) gene in Trypanosoma brucei gambiense stocks from Cameroon. Acta Trop. 1992;51:123–134.
    1. Moser DR, Kirchhoff LV, Donelson JE. Detection of Trypanosoma cruzi by DNA amplification using the polymerase chain reaction. J Clin Microbiol. 1989;27:1477–1482.
    1. Giroud C, Ottones F, Coustou V, Dacheux D, Biteau N, et al. Murine models for Trypanosoma brucei gambiense disease progression-from silent to chronic infections and early brain tropism. PLoS Negl Trop Dis. 2009;3:e509.
    1. Büscher P, Lejon V, Magnus E, Van Meirvenne N. Improved latex agglutination test for detection of antibodies in serum and cerebrospinal fluid of Trypanosoma brucei gambiense infected patients. Acta Trop. 1999;73:11–20.
    1. Holland WG, Thanh NG, My LN, Magnus E, Verloo D, et al. Evaluation of whole fresh blood and dried blood on filter paper discs in serological tests for Trypanosoma evansi in experimentally infected water buffaloes. Acta Trop. 2002;81:159–165.

Source: PubMed

3
Prenumerera