The SNAP trial: a double blind multi-center randomized controlled trial of a silicon nitride versus a PEEK cage in transforaminal lumbar interbody fusion in patients with symptomatic degenerative lumbar disc disorders: study protocol

Roel F M R Kersten, Steven M van Gaalen, Mark P Arts, Kit C B Roes, Arthur de Gast, Terry P Corbin, F Cumhur Öner, Roel F M R Kersten, Steven M van Gaalen, Mark P Arts, Kit C B Roes, Arthur de Gast, Terry P Corbin, F Cumhur Öner

Abstract

Background: Polyetheretherketone (PEEK) cages have been widely used in the treatment of lumbar degenerative disc disorders, and show good clinical results. Still, complications such as subsidence and migration of the cage are frequently seen. A lack of osteointegration and fibrous tissues surrounding PEEK cages are held responsible. Ceramic implants made of silicon nitride show better biocompatible and osteoconductive qualities, and therefore are expected to lower complication rates and allow for better fusion.Purpose of this study is to show that fusion with the silicon nitride cage produces non-inferior results in outcome of the Roland Morris Disability Questionnaire at all follow-up time points as compared to the same procedure with PEEK cages.

Methods/design: This study is designed as a double blind multi-center randomized controlled trial with repeated measures analysis. 100 patients (18-75 years) presenting with symptomatic lumbar degenerative disorders unresponsive to at least 6 months of conservative treatment are included. Patients will be randomly assigned to a PEEK cage or a silicon nitride cage, and will undergo a transforaminal lumbar interbody fusion with pedicle screw fixation. Primary outcome measure is the functional improvement measured by the Roland Morris Disability Questionnaire. Secondary outcome parameters are the VAS leg, VAS back, SF-36, Likert scale, neurological outcome and radiographic assessment of fusion. After 1 year the fusion rate will be measured by radiograms and CT. Follow-up will be continued for 2 years. Patients and clinical observers who will perform the follow-up visits will be blinded for type of cage used during follow-up. Analyses of radiograms and CT will be performed independently by two experienced radiologists.

Discussion: In this study a PEEK cage will be compared with a silicon nitride cage in the treatment of symptomatic degenerative lumbar disc disorders. To our knowledge, this is the first randomized controlled trial in which the silicon nitride cage is compared with the PEEK cage in patients with symptomatic degenerative lumbar disc disorders.

Trial registration: NCT01557829.

References

    1. Buric J, Pullidori M. Long-term reduction in pain and disability after surgery with the interspinous device for intervertebral assisted motion (DIAM) spin stabilization system in patients with low back pain: 4 year follow-up from a longitudinal prospective case series. Eur Spine J. 2011;20(8):1304–1311. doi: 10.1007/s00586-011-1697-6.
    1. Van Tulder MW, Koes BW, Bouter LM. A cost-of-illness study of back pain in the Netherlands. Pain. 1995;62(2):233–240. doi: 10.1016/0304-3959(94)00272-G.
    1. Adams MA, Dolan P. Spine biomechanics. J Biomech. 2005;38(10):1972–1983. doi: 10.1016/j.jbiomech.2005.03.028.
    1. Dickson WA, Willien JL. Arthrodesis of the hip joint in degenerative arthritis; a modified one-stage procedure with internal fixation. Rheumatism. 1947;3(7):131–138.
    1. Caron M, Kron E, Saltrick KR. Tibiotalar joint arthrodesis for the treatment of severe ankle joint degeneration secondary to rheumatoid arthritis. Clin Podiatr Med Surg. 1999;16(2):337–361.
    1. Brantigan JW. Pseudoarthrosis rate after allograft posterior lumbar interbody fusion with pedicle screw and plate fixation. Spine. 1994;19:1271–1280. doi: 10.1097/00007632-199405310-00014.
    1. McAfee PC. Interbody fusion cages in reconstructive operations on the spine. J Bone Joint Surg Am. 1999;81:859–880.
    1. Smit TH, Muller R, van Dijk M, Wijsman PIJM. Changes in bone architecture during spinal fusion: three years follow-up and the role of cage stiffness. Spine. 2003;28(16):1802–1808. doi: 10.1097/01.BRS.0000083285.09184.7A.
    1. Kandziora F, Schollmeier G, Scholz M, Schaefer J, Scholz A, Schmidmaier G, Schroder R, Bail H, Duda G, Mittlmeier T, Haas NP. Influence of cage design on interbody fusion in a sheep cervical spine model. J Neurosurg. 2002;96(Suppl 3):321–332.
    1. Weiner BK, Fraser RD. Spine update lumbar interbody cages. Spine. 1998;23:634–640. doi: 10.1097/00007632-199803010-00020.
    1. Goh JCH, Wong HK, Thambyah A, Yu CS. Influence of PLIF cage size on lumbar spine stability. Spine. 2000;25:35–39. doi: 10.1097/00007632-200001010-00008.
    1. Tsantrizos A, Andreou A, Aebi M, Steffen T. Biomechanical stability of five stand-alone anterior lumbar interbody fusion constructs. Eur Spine J. 2000;9:14–22. doi: 10.1007/s005860050003.
    1. Kanayama M, Cunningham BW, Haggerty CJ, Abumi K, Kaneda K, McAfee P. In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. J Neurosurg. 2000;93(suppl 2):259–265.
    1. Van Dijk M, Smit TH, Sugihara S, Burger EH, Wuisman PI. The effect of cage stiffness on the rate of lumbar interbody fusion: an in vivo model using poly(l-lactic acid) and titanium cages. Spine. 2002;27:682–688. doi: 10.1097/00007632-200204010-00003.
    1. Fogel GR, Toohey JS, Neidre A, Brantigan JW. Is one cage enough in posterior lumbar interbody fusion: a comparison of unilateral single cage interbody fusion to bilateral cages. J Spinal Disord Tech. 2007;20:60–65. doi: 10.1097/01.bsd.0000211251.59953.a4.
    1. Molinari RW, Sloboda J, Johnstone FL. Are 2 cages needed with instrumented PLIF? A comparison of 1 versus 2 interbody cages in a military population. Am J Orthop. 2003;32:337–343.
    1. Skinner HB. Composite technology for total hip arthroplasty. Clin Orthop Relat Res. 1988;Oct(235):224–236.
    1. Brown SA, Hastings RS, Mason JJ, Moet A. Characterization of short-fibre reinforced thermoplastics for fracture fixation devices. Biomaterials. 1990;11(8):541–547. doi: 10.1016/0142-9612(90)90075-2.
    1. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845–4869. doi: 10.1016/j.biomaterials.2007.07.013.
    1. Rousseau MA, Lazennec JY, Saillant G. Circumferential arthrodesis using PEEK cages at the lumbar spine. J Spinal Disord Tech. 2007;20:278–281. doi: 10.1097/01.bsd.0000211284.14143.63.
    1. Cutler AR, Siddiqui S, Mohan AL, Hillard VH, Cerabona F, Das K. Comparison of polyetheretherketone cages with femoral cortical bone allograft as a single piece interbody spacer in transforaminal lumbar interbody fusion. J Neurosurg Spine. 2006;5:534–539. doi: 10.3171/spi.2006.5.6.534.
    1. Le TV, Baaj AA, Dakwar E, Burkett CJ, Murray G, Smith DA, Uribe JS. Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine. 2012;37(14):1268–1273. doi: 10.1097/BRS.0b013e3182458b2f.
    1. Kim PD, Baron EM, Levesque M. Extrusion of expandable stacked interbody device for lumbar fusion: case report of a complication. Spine. 2012;37(18):E1155–E1158. doi: 10.1097/BRS.0b013e318257f14d.
    1. Toth JM, Wang M, Estes BT, Scifert JL, Seim HB 3rd, Turner AS. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials. 2006;27:324–334. doi: 10.1016/j.biomaterials.2005.07.011.
    1. Engelhardt A, Salzer M, Zeibig A, Locke H. Experiences with Al2O3 implantations in humans to bridge resection defects. J Biomed Mater Res. 1975;9:227–232. doi: 10.1002/jbm.820090425.
    1. Arts MP, Wolfs JF, Corbin TP. The Cascade trial: effectiveness of ceramic versus PEEK cages for anterior cervical discectomy with interbody fusion; protocol of a blinded randomized controlled trial. BMC Musculoskelet Disord. 2013;14:244. doi: 10.1186/1471-2474-14-244.
    1. Bal BS, Khandkar A, Lakshminarayanan R, Clarke I, Hoffman AA, Rahaman MN. Fabrication and testing of silicon nitride bearings in total hip arthroplasty: winner of the 2007 “HAP” PAUL award. J Arthroplasty. 2009;24:110–116.
    1. Howlett CR, McCartney E, Ching W. The effect of silicon nitride ceramic on rabbit skeletal cells and tissue. An in vitro and in vivo investigation. Clin Orthop Relat Res. 1989;244:293–304.
    1. Mazzocchi M, Gardini D, Traverso PL, Faga MG, Bellosi A. On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part II: chemical stability and wear resistance in body environment. J Mater Sci Mater Med. 2008;19:2889–2901. doi: 10.1007/s10856-008-3437-y.
    1. Mazzocchi M, Bellosi A. On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part I: processing, microstructure, mechanical properties, cytotoxicity. J Mater Sci Mater Med. 2008;19:2881–2887. doi: 10.1007/s10856-008-3417-2.
    1. Neumann A, Reske T, Held M, Jahnke K, Ragoss C, Maier HR. Comparitive investigation of the biocompatible of various silicon nitride ceramic qualities in vitro. J Mater Sci Mater Med. 2004;15(10):1135–1140.
    1. Bal BS, Rahaman MN. Orthopedic applications of silicon nitride ceramics. Acta Biomater. 2012;8(8):2889–2898. doi: 10.1016/j.actbio.2012.04.031.
    1. Gorth DJ, Puckett S, Ercan B, Webster TJ, Rahaman M, Bal BS. Decreased bacteria activity on Si(3)N4 surfaces compared with PEEK or titanium. Int J Nanomedicine. 2012;7:4829–4840.
    1. Webster TJ, Patel AA, Rahaman MN, Sonny Bal B. Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone) and titanium implants. Acta Biomater. 2012;8(12):4447–4454. doi: 10.1016/j.actbio.2012.07.038.
    1. Youssef JA, Patty CA. Management of patients diagnosed with lumbar spinal stenosis and disc degeneration undergoing transforaminal lumbar interbody fusion using a novel ceramic implant with one year follow up. Abstract presented at 7th World Biomaterials Congress, Sydney, Australia. 2004.
    1. Sorrel CC, Hardcastle PH, Druit RK, Howlett CR, McCartney ER. Results of 15-year clinical study of reaction bonded silicon nitride intervertebral spacers. Abstract presented at the 7th World Biomaterials Congress, Sydney, Australia. 2004.
    1. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26:1873–1878. doi: 10.1097/00007632-200109010-00011.
    1. Harms J, Rolinger H. A one-stage procedure in operative treatment of spondylolisthesis: dorsal traction-reposition and anterior fusion (in German) Z Orthop Ihre Grenzgeb. 1982;120:343–347. doi: 10.1055/s-2008-1051624.
    1. Patrick DL, Deyo RA, Atlas SJ, Singer DE, Chapin A, Keller RB. Assessing health-related quality of life in patients with sciatica. Spine. 1995;20:1899–1908. doi: 10.1097/00007632-199509000-00011.
    1. Roland M, Morris R. A study of the natural history of back pain. Part I: development of a reliable and sensitive measure of disability in low-back pain. Spine. 1983;8:141–144. doi: 10.1097/00007632-198303000-00004.
    1. Roland M, Fairbank J. The Roland-Morris disability questionnaire and the Oswestry disability questionnaire. Spine. 2000;25:3115–3124. doi: 10.1097/00007632-200012150-00006.
    1. Gommans I, Koes BW. In: Low Back Pain. Tulder MW, Koes BW, Bouter LM, editor. EMGO; 1996. Validity and responsiveness of the Dutch adaptation of the Roland disability questionnaire; pp. 57–70.
    1. Van der Zee KSR. De psychometrische kwaliteiten van de MOS 36-item Short Form Health Survey (SF-36) in een Nederlandse populatie. T Soc Gezondheidsz. 1993;71:183–191.
    1. Ware JE Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30:473–483. doi: 10.1097/00005650-199206000-00002.
    1. Park Y, Ha JW, Lee YT, Sung NY. The effect of a radiographic solid fusion on clinical outcomes after minimally invasive transforaminal lumbar interbody fusion. Spine J. 2011;11:205–212. doi: 10.1016/j.spinee.2011.01.023.
    1. Burkus JK, Foley K, Haid RW, Lehuec JC. Surgical interbody research group – radiographic assessment of interbody fusion devices: fusion criteria for anterior lumbar interbody surgery. Neurosurg Focus. 2001;15;10(4):E11.
    1. Robertson PA, Plank LD. Prospective cohort analysis of disability reduction with lumbar spinal fusion surgery in community practice. J Spinal Disord Tech. 2008;21:235–240. doi: 10.1097/BSD.0b013e3180ca712c.
    1. Scheufler KM, Dohmen H, Vougioukas VI. Percutaneous transforaminal lumbar interbody fusion for the treatment of degenerative lumbar instability. Neurosurgery. 2007;60:203–212.
    1. Ostelo RWJG, de Vet HCW, Knol DL, van den Brandt PA. 24-item Roland-Morris disability questionnaire was preferred out of six functional status questionnaires for post-lumbar disc surgery. J Clin Epidemiol. 2004;57:268–276. doi: 10.1016/j.jclinepi.2003.09.005.

Source: PubMed

3
Prenumerera