The use of a biphasic calcium phosphate in a maxillary sinus floor elevation procedure: a clinical, radiological, histological, and histomorphometric evaluation with 9- and 12-month healing times

W F Bouwman, N Bravenboer, J W F H Frenken, C M Ten Bruggenkate, E A J M Schulten, W F Bouwman, N Bravenboer, J W F H Frenken, C M Ten Bruggenkate, E A J M Schulten

Abstract

Background: This study evaluates the clinical, radiological, histological, and histomorphometric aspects of a fully synthetic biphasic calcium phosphate (BCP) (60% hydroxyapatite and 40% ß-tricalcium phosphate), used in a human maxillary sinus floor elevation (MSFE) procedure with 9- and 12-month healing time.

Methods: A unilateral MSFE procedure, using 100% BCP, was performed in two series of five patients with healing times of 9 and 12 months respectively. Clinical and radiological parameters were measured up to 5 years postoperatively. Biopsy retrieval was carried out during dental implants placement. Histology and histomorphometry were performed on 5-μm sections of undecalcified bone biopsies.

Results: The MSFE procedure with BCP showed uneventful healing in all cases. All dental implants appeared to be well osseointegrated after 3 months. Radiological evaluation showed less than 1 mm tissue height loss from MSFE to the 5-year follow-up examination. No signs of inflammation were detected on histological examination. Newly formed mineralized tissue was found cranially from the native bone. The BCP particles were surrounded by connective tissue, osteoid islands, and newly formed bone. Mineralized bone tissue was in intimate contact with the BCP particles. After 12 months, remnants of BCP were still present. The newly formed bone had a trabecular structure. Bone maturation was demonstrated by the presence of lamellar bone. Histomorphometric analysis showed at 9 and 12 months respectively an average vital bone volume/total volume of 35.2 and 28.2%, bone surface/total volume of 4.2 mm2/mm3 and 8.3 mm2/mm3, trabecular thickness of 224.7 and 66.7 μm, osteoid volume/bone volume of 8.8 and 3.4%, osteoid surface/bone surface (OS/BS) of 42.4 and 8.2%, and osteoid thickness of 93.9 and 13.6 μm.

Conclusions: MFSE with BCP resulted in new bone formation within the augmented sinus floor and allowed the osseointegration of dental implants in both groups. From a histological and histomorphometric perspective, a 9-month healing time for this type of BCP may be the optimal time for placement of dental implants.

Keywords: Biphasic calcium phosphate; Bone substitute; Sinus augmentation; Sinus floor elevation.

Conflict of interest statement

Competing interests

Authors W.F. Bouwman, N. Bravenboer, J.W.F.H. Frenken, C.M. ten Bruggenkate and E.A.J.M. Schulten state that there are no conflicts of interest, either directly or indirectly.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Images of patient # 5 (9-month healing time). a. Radiograph of the left maxillary sinus: situation 9 months after the maxillary sinus floor elevation procedure. b. With a trephine drill, the implant osteotomy is made and the biopsy is obtained. c. Clinical situation after placing two Straumann® SLA implants in the left posterior maxilla. d. Radiograph of two Straumann® SLA implants in the left posterior maxilla
Fig. 2
Fig. 2
Aveolar tissue height (in true mm) over a 5-year period in the 9-month group
Fig. 3
Fig. 3
Alveolar tissue height (in true mm) over a 5-year period in the 12-month group
Fig. 4
Fig. 4
Patient # 1 (12-month healing time): overview of a typical example of a bone biopsy stained with Goldner trichrome staining (magnification ×10)
Fig. 5
Fig. 5
Patient # 4 (9-month healing time): increased bone formation following the shape of the grafted particles stained with Goldner trichrome staining (magnification ×100)
Fig. 6
Fig. 6
Patient # 1 (12-month healing time): increased bone formation following the shape of the grafted particles that are still present (magnification ×100)

References

    1. Boyne PJ, James RA. Grafting of the maxillary sinus floor with autogenous marrow and bone. J Oral Surg. 1980;38:613–616.
    1. Tatum H., Jr Maxillary and sinus implant reconstructions. Dent Clin N Am. 1986;30:207–229.
    1. Del Fabbro M, Rosano G, Taschieri S. Implant survival rates after maxillary sinus augmentation. Eur J Oral Sci. 2008;116:497–506. doi: 10.1111/j.1600-0722.2008.00571.x.
    1. Pjetursson BE, Tan WC, Zwahlen M, Lang NP. A systematic review of the success of sinus floor elevation and survival of implants inserted in combination with sinus floor elevation. Part I: lateral approach. J Clin Periodontol. 2008;35:216–240. doi: 10.1111/j.1600-051X.2008.01272.x.
    1. Burchardt H. The biology of bone graft repair. Clin Orthop Relat Res. 1983;174:28–42.
    1. Jensen OT, Shulman LB, Block MS, Iacono VJ. Report of the sinus consensus conference of 1996. Int J Oral Maxillofac Implants. 1998;13(Suppl):11–45.
    1. Tong DC, Rioux K, Drangsholt M, Beirne OR. A review of survival rates for implants placed in grafted maxillary sinuses using meta-analysis. Int J Oral Maxillofac Implants. 1998;13:175–182.
    1. van den Bergh JP, ten Bruggenkate CM, Krekeler G, Tuinzing DB. Sinusfloor elevation and grafting with autogenous iliac crest bone. Clin Oral Implants Res. 1998;9:429–435. doi: 10.1034/j.1600-0501.1996.090608.x.
    1. Klijn RJ, Meijer GJ, Bronkhorst EM, Jansen JA. A meta-analysis of histomorphometric results and graft healing time of various biomaterials compared to autologous bone used as sinus floor augmentation material in humans. Tissue Eng Part B Rev. 2010;16:493–507. doi: 10.1089/ten.teb.2010.0035.
    1. Misch CM. Autogenous bone: is it still the gold standard? Implant Dent. 2010;19(5):361. doi: 10.1097/ID.0b013e3181f8115b.
    1. Kalk WW, Raghoebar GM, Jansma J, Boering G. Morbidity from iliac crest bone harvesting. Int J Oral Maxillofac Surg. 1996;54:1424–1429. doi: 10.1016/S0278-2391(96)90257-8.
    1. Raghoebar GM, Louwerse C, Kalk WW, Vissink A. Morbidity of chin bone harvesting. Clin Oral Implants Res. 2001;12:503–507. doi: 10.1034/j.1600-0501.2001.120511.x.
    1. Zijderveld SA, ten Bruggenkate CM, van Den Bergh JP, EAJM S. Fractures of the iliac crest after split-thickness bone grafting for preprosthetic surgery: report of 3 cases and review of the literature. J Oral Maxillofac Surg. 2004;7:781–786. doi: 10.1016/j.joms.2003.12.018.
    1. Beirne JC, Barry HJ, Brady FA, Morris VB. Donor site morbidity of the anterior iliac crest following cancellous bone harvest. Int J Oral Maxillofac Surg. 1996;25:268–271. doi: 10.1016/S0901-5027(06)80053-6.
    1. Vermeeren JIJF, Wismeijer D, van Waas MAJ. One-step reconstruction of the severely resorbed mandible with onlay bone grafts and endosteal implants: a 5-year follow-up. Int J Oral Maxillofac Surg. 1996;2:112–115. doi: 10.1016/S0901-5027(96)80053-1.
    1. Nkenke E, Stelzle F. Clinical outcomes of sinus floor augmentation for implant placement using autogenous bone or bone substitutes: a systematic review. Clin Oral Implants Res. 2009;20(Suppl. 4):124–133. doi: 10.1111/j.1600-0501.2009.01776.x.
    1. Wheeler SL. Sinus augmentation for dental implants: the use of alloplastic materials. J Oral Maxillofac Surg. 1997;55:1287–1293. doi: 10.1016/S0278-2391(97)90186-5.
    1. Nery EB, Lee KK, Czajkowski S, Dooner JJ, Duggan M, Ellinger RF, Henkin JM, Hines R, Miller M, Olson JW. A veterans administration cooperative study of biphasic calcium phosphate ceramic in periodontal osseous defects. J Periodontol. 1990;61:737–744. doi: 10.1902/jop.1990.61.12.737.
    1. Zerbo IR, Bronckers AL, de Lange G, Burger EH. Localisation of osteogenic and osteoclastic cells in porous beta-tricalcium phosphate particles used for human maxillary sinus floor elevation. Biomaterials. 2005;26:1445–1451. doi: 10.1016/j.biomaterials.2004.05.003.
    1. Joosten U, Joist A, Frebel T, Walter M, Langer M. The use of an in situ curing hydroxyapatite cement as an alternative to bone graft following removal of enchondroma of the hand. J Hand Surg Br Eur. 2000;25(3):288–291. doi: 10.1054/jhsb.2000.0383.
    1. Costantino PD, Friedman CD, Jones K, Chow LC, Pelzer HJ, Sisson GAS. Hydroxyapatite cement: I. Basic chemistry and histologic properties. Arch Otolaryngol Head Neck Surg. 1991;117:397–384. doi: 10.1001/archotol.1991.01870160033004.
    1. Costantino PD, Friedman CD. Synthetic bone graft substitutes. Otolaryngolic Clin North Am. 1994;27:1037–1074.
    1. Jensen SS, Aaboe M, Pinholt EM, Hjorting-Hansen E, Melsen F, Ruyter IE. Tissue reaction and material characteristics of four bone substitutes. Int J Oral Maxillofac Implants. 1996;11:55–66.
    1. Daculsi G, Laboux O, Malard O. Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 2003;14: 195–200.
    1. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003;14:201–209. doi: 10.1023/A:1022872421333.
    1. Schopper C, Ziya-Ghazvini F, Goriwoda W, Moser D, Wanschitz F, Spassova E, Lagogiannis G, Auterith A, Ewers R. HA/TCP compounding of a porous CaP biomaterial improves bone formation and scaffold degradation—a long-term histological study. J Biomed Mater Res B Appl Biomater. 2005;74:458–467. doi: 10.1002/jbm.b.30199.
    1. Frenken JW, Bouwman WF, Bravenboer N, Zijderveld SA, Schulten EA, ten Bruggenkate CM. The use of Straumann ® Bone Ceramic in a maxillary sinus floor elevation procedure: a clinical, radiological, histological and histomorphometric evaluation with a 6-month healing period. Clin Oral Implants Res. 2010;21:201–208. doi: 10.1111/j.1600-0501.2009.01821.x.
    1. Bodde EW, Wolke JG, Kowalski RS, Jansen JA. Bone regeneration of porous betatricalcium phosphate (Conduit TCP) and of biphasic calcium phosphate ceramic (Biosel) in trabecular defects in sheep. J Biomed Mater Res. 2007;A 82:711–722. doi: 10.1002/jbm.a.30990.
    1. Cordaro L, Bosshardt DD, Palattella P, Rao W, Serino G, Chiapasco M. Maxillary sinus grafting with Bio-Osss or Straumanns Bone Ceramic: histomorphometric results from a randomized controlled multicenter clinical trial. Clin Oral Implants Res. 2008;19:796–803. doi: 10.1111/j.1600-0501.2008.01565.x.
    1. Zerbo IR, Zijderveld SA, de Boer A, Bronckers AL, de Lange G, ten Bruggenkate CM, Burger EH. Histomorphometry of human sinus floor augmentation using a porous beta-tricalcium phosphate: a prospective study. Clin Oral Implants Res. 2004;15:724–732. doi: 10.1111/j.1600-0501.2004.01055.x.
    1. Nery EB, LeGeros RZ, Lynch KL, Lee K. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/beta TCP in periodontal osseous defects. J Periodontol. 1992;63:729–735. doi: 10.1902/jop.1992.63.9.729.
    1. Boix D, Gauthier O, Guicheux J, Pilet P, Weiss P, Grimandi G, Daculsi G. Alveolar bone regeneration for immediate implant placement using an injectable bone substitute: an experimental study in dogs. J Periodontol. 2004;75:663–671. doi: 10.1902/jop.2004.75.5.663.
    1. Jensen SS, Yeo A, Dard M, Hunziker E, Schenk R. Buser D. Evaluation of a novel biphasic calcium phosphate in standardized bone defects. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res 2007;18: 752–760.
    1. Klijn RJ, Hoekstra JWM, Van Den Beucken JJJP, Meijer GJ, Jansen JA. Maxillary sinus augmentation with microstructured tricalcium phosphate ceramic in sheep. Clin Oral Implants Res. 2012;23:274–280. doi: 10.1111/j.1600-0501.2011.02190.x.
    1. Groeneveld EH, van den Bergh JP, Holzmann P, ten Bruggenkate CM, Tuinzing DB, Burger EH. Mineralization processes in demineralized bone matrix grafts in human maxillary sinus floor elevations. J Biomed Mater Res. 1999;48:393–402. doi: 10.1002/(SICI)1097-4636(1999)48:4<393::AID-JBM1>;2-C.
    1. Schulten EAJM, Prins HJ, Overman JR, Helder MN, ten Bruggenkate CM, Klein-Nulend JA. Novel approach revealing the effect of collagenous membrane on osteoconduction in maxillary sinus floor elevation with β-tricalcium phosphate. Eur Cells Mater. 2013;25:215–228. doi: 10.22203/eCM.v025a16.
    1. Oostlander AE, Bravenboer N, Sohl E, Holzmann PJ, van der Woude CJ, Dijkstra G, Stokkers PC, Oldenburg B, Netelenbos JC, Hommes DW, van Bodegraven AA, Lips P, Dutch Initiative on Crohn and Colitis (ICC) Histomorphometric analysis reveals reduced bone mass and bone formation in patients with quiescent Crohn's disease. Gastroenterology. 2011;140(1):116–123. doi: 10.1053/j.gastro.2010.09.007.
    1. Schenk RK, Olah AJ, Herrmann W. Preparation of calcified tissues for light microscopy. In Methods of calcified tissue preparation. Dickson GR, editor. Amsterdam: Elsevier Science Publishers B.V.; 1984;1–56.
    1. Romeis B. Trichromfaerbung nach Goldner, Mikroskopische Technik. Muenchen: Urban & Schwarzenberg; 1989.
    1. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. Journal of Bone and Mineral Research. 2012;DOI: 10.1002/jbmr.180.

Source: PubMed

3
Prenumerera