Sovateltide Mediated Endothelin B Receptors Agonism and Curbing Neurological Disorders

Amaresh K Ranjan, Anil Gulati, Amaresh K Ranjan, Anil Gulati

Abstract

Neurological/neurovascular disorders constitute the leading cause of disability and the second leading cause of death globally. Major neurological/neurovascular disorders or diseases include cerebral stroke, Alzheimer's disease, spinal cord injury, neonatal hypoxic-ischemic encephalopathy, and others. Their pathophysiology is considered highly complex and is the main obstacle in developing any drugs for these diseases. In this review, we have described the endothelin system, its involvement in neurovascular disorders, the importance of endothelin B receptors (ETBRs) as a novel potential drug target, and its agonism by IRL-1620 (INN-sovateltide), which we are developing as a drug candidate for treating the above-mentioned neurological disorders/diseases. In addition, we have highlighted the results of our preclinical and clinical studies related to these diseases. The phase I safety and tolerability study of sovateltide has shown it as a safe and tolerable compound at therapeutic dosages. Furthermore, preclinical and clinical phase II studies have demonstrated the efficacy of sovateltide in treating acute ischemic stroke. It is under development as a first-in-class drug. In addition, efficacy studies in Alzheimer's disease (AD), acute spinal cord injury, and neonatal hypoxic-ischemic encephalopathy (HIE) are ongoing. Successful completion of these studies will validate that ETBRs signaling can be an important target in developing drugs to treat neurological/neurovascular diseases.

Keywords: IRL-1620; endothelin B receptors; neurogenesis; neurological diseases; neurovascular disorders; regeneration; sovateltide; stem/progenitor cells.

Conflict of interest statement

A.G. is a Pharmazz, Inc. employee and has issued and pending patents related to the studies described in this review. A.K.R. declares no competing interests.

Figures

Figure 1
Figure 1
Chemical structure of sovateltide.( Adapted with permission from MedKoo Biosciences, Inc. © MedKoo Biosciences, Inc. https://www.medkoo.com/products/34963, accessed on 10 March 2022).
Figure 2
Figure 2
Diagrammatic representation of the effect of sovateltide on neuronal progenitor cell differentiation and neural regeneration after cerebral ischemic stroke. (A) Normal homeostasis, (B) Higher damage than regeneration (probably due to less differentiation of NPCs), (C) Higher regeneration and lower damage after sovateltide treatment (probably due to higher NPCs differentiation), which remains similar after saline treatment (D).

References

    1. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332:411–415. doi: 10.1038/332411a0.
    1. Davenport A.P., Maguire J.J. Endothelin. Pt 1Handb. Exp. Pharmacol. 2006;176:295–329. doi: 10.1007/3-540-32967-6_9.
    1. Sakurai T., Yanagisawa M., Takuwa Y., Miyazaki H., Kimura S., Goto K., Masaki T. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature. 1990;348:732–735. doi: 10.1038/348732a0.
    1. Arai H., Hori S., Aramori I., Ohkubo H., Nakanishi S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature. 1990;348:730–732. doi: 10.1038/348730a0.
    1. Ribeiro-Oliveira A., Jr., Nogueira A.I., Pereira R.M., Boas W.W., Dos Santos R.A., Simoes e Silva A.C. The renin-angiotensin system and diabetes: An update. Vasc. Health Risk Manag. 2008;4:787–803.
    1. Schneider M.P., Boesen E.I., Pollock D.M. Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu. Rev. Pharmacol. Toxicol. 2007;47:731–759. doi: 10.1146/annurev.pharmtox.47.120505.105134.
    1. Birnbaumer L. G proteins in signal transduction. Annu. Rev. Pharmacol. Toxicol. 1990;30:675–705. doi: 10.1146/annurev.pa.30.040190.003331.
    1. Casey P.J., Gilman A.G. G protein involvement in receptor-effector coupling. J. Biol. Chem. 1988;263:2577–2580. doi: 10.1016/S0021-9258(18)69103-3.
    1. Attwood T.K., Findlay J.B. Design of a discriminating fingerprint for G-protein-coupled receptors. Protein Eng. 1993;6:167–176. doi: 10.1093/protein/6.2.167.
    1. Attwood T.K., Findlay J.B. Fingerprinting G-protein-coupled receptors. Protein Eng. 1994;7:195–203. doi: 10.1093/protein/7.2.195.
    1. Kolakowski L.F., Jr. GCRDb: A G-protein-coupled receptor database. Recept. Channels. 1994;2:1–7.
    1. Foord S.M., Bonner T.I., Neubig R.R., Rosser E.M., Pin J.P., Davenport A.P., Spedding M., Harmar A.J. International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol. Rev. 2005;57:279–288. doi: 10.1124/pr.57.2.5.
    1. Bjarnadottir T.K., Gloriam D.E., Hellstrand S.H., Kristiansson H., Fredriksson R., Schioth H.B. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics. 2006;88:263–273. doi: 10.1016/j.ygeno.2006.04.001.
    1. Shrader S.H., Song Z.H. Discovery of endogenous inverse agonists for G protein-coupled receptor 6. Biochem. Biophys. Res. Commun. 2020;522:1041–1045. doi: 10.1016/j.bbrc.2019.12.004.
    1. Civelli O., Reinscheid R.K., Zhang Y., Wang Z., Fredriksson R., Schioth H.B. G protein-coupled receptor deorphanizations. Annu. Rev. Pharmacol. Toxicol. 2013;53:127–146. doi: 10.1146/annurev-pharmtox-010611-134548.
    1. Iwasaki H., Eguchi S., Ueno H., Marumo F., Hirata Y. Endothelin-mediated vascular growth requires p42/p44 mitogen-activated protein kinase and p70 S6 kinase cascades via transactivation of epidermal growth factor receptor. Endocrinology. 1999;140:4659–4668. doi: 10.1210/endo.140.10.7023.
    1. Robin P., Boulven I., Desmyter C., Harbon S., Leiber D. ET-1 stimulates ERK signaling pathway through sequential activation of PKC and Src in rat myometrial cells. Am. J. Physiol. Cell Physiol. 2002;283:C251–C260. doi: 10.1152/ajpcell.00601.2001.
    1. Mazzuca M.Q., Khalil R.A. Vascular endothelin receptor type B: Structure, function and dysregulation in vascular disease. Biochem. Pharmacol. 2012;84:147–162. doi: 10.1016/j.bcp.2012.03.020.
    1. MacCumber M.W., Ross C.A., Snyder S.H. Endothelin in brain: Receptors, mitogenesis, and biosynthesis in glial cells. Proc. Natl. Acad. Sci. USA. 1990;87:2359–2363. doi: 10.1073/pnas.87.6.2359.
    1. Ehrenreich H., Nau T.R., Dembowski C., Hasselblatt M., Barth M., Hahn A., Schilling L., Siren A.L., Bruck W. Endothelin b receptor deficiency is associated with an increased rate of neuronal apoptosis in the dentate gyrus. Neuroscience. 2000;95:993–1001. doi: 10.1016/S0306-4522(99)00507-2.
    1. Vidovic M., Chen M.M., Lu Q.Y., Kalloniatis K.F., Martin B.M., Tan A.H., Lynch C., Croaker G.D., Cass D.T., Song Z.M. Deficiency in endothelin receptor B reduces proliferation of neuronal progenitors and increases apoptosis in postnatal rat cerebellum. Cell. Mol. Neurobiol. 2008;28:1129–1138. doi: 10.1007/s10571-008-9292-z.
    1. Gulati A., Srimal R.C. Endothelin antagonizes the hypotension and potentiates the hypertension induced by clonidine. Eur. J. Pharmacol. 1993;230:293–300. doi: 10.1016/0014-2999(93)90564-X.
    1. Gulati A., Rebello S., Chari G., Bhat R. Ontogeny of endothelin and its receptors in rat brain. Life Sci. 1992;51:1715–1724. doi: 10.1016/0024-3205(92)90300-E.
    1. Gulati A. Endothelin Receptors, Mitochondria and Neurogenesis in Cerebral Ischemia. Curr. Neuropharmacol. 2016;14:619–626. doi: 10.2174/1570159X14666160119094959.
    1. Gulati A., Hornick M.G., Briyal S., Lavhale M.S. A novel neuroregenerative approach using ET(B) receptor agonist, IRL-1620, to treat CNS disorders. Physiol. Res. 2018;67:S95–S113. doi: 10.33549/physiolres.933859.
    1. Davenport A.P., Kuc R.E., Maguire J.J., Harland S.P. ETA receptors predominate in the human vasculature and mediate constriction. J. Cardiovasc. Pharmacol. 1995;26((Suppl. 3)):S265–S267. doi: 10.1097/00005344-199526003-00080.
    1. Regard J.B., Sato I.T., Coughlin S.R. Anatomical profiling of G protein-coupled receptor expression. Cell. 2008;135:561–571. doi: 10.1016/j.cell.2008.08.040.
    1. Harland S.P., Kuc R.E., Pickard J.D., Davenport A.P. Characterization of endothelin receptors in human brain cortex, gliomas, and meningiomas. J. Cardiovasc. Pharmacol. 1995;26((Suppl. 3)):S408–S411. doi: 10.1097/00005344-199506263-00120.
    1. Barton M., Yanagisawa M. Endothelin: 30 Years from Discovery to Therapy. Hypertension. 2019;74:1232–1265. doi: 10.1161/HYPERTENSIONAHA.119.12105.
    1. Davenport A.P., Hyndman K.A., Dhaun N., Southan C., Kohan D.E., Pollock J.S., Pollock D.M., Webb D.J., Maguire J.J. Endothelin. Pharmacol. Rev. 2016;68:357–418. doi: 10.1124/pr.115.011833.
    1. Davenport A.P., Kuc R.E., Southan C., Maguire J.J. New drugs and emerging therapeutic targets in the endothelin signaling pathway and prospects for personalized precision medicine. Physiol. Res. 2018;67:S37–S54. doi: 10.33549/physiolres.933872.
    1. Leonard M.G., Prazad P., Puppala B., Gulati A. Selective Endothelin-B Receptor Stimulation Increases Vascular Endothelial Growth Factor in the Rat Brain during Postnatal Development. Drug Res. 2015;65:607–613. doi: 10.1055/s-0034-1398688.
    1. Riechers C.C., Knabe W., Siren A.L., Gariepy C.E., Yanagisawa M., Ehrenreich H. Endothelin B receptor deficient transgenic rescue rats: A rescue phenomenon in the brain. Neuroscience. 2004;124:719–723. doi: 10.1016/j.neuroscience.2003.10.023.
    1. Briyal S., Nguyen C., Leonard M., Gulati A. Stimulation of endothelin B receptors by IRL-1620 decreases the progression of Alzheimer’s disease. Neuroscience. 2015;301:1–11. doi: 10.1016/j.neuroscience.2015.05.044.
    1. Gulati A. Understanding neurogenesis in the adult human brain. Indian J. Pharmacol. 2015;47:583–584. doi: 10.4103/0253-7613.169598.
    1. Leonard M.G., Briyal S., Gulati A. Endothelin B receptor agonist, IRL-1620, reduces neurological damage following permanent middle cerebral artery occlusion in rats. Brain Res. 2011;1420:48–58. doi: 10.1016/j.brainres.2011.08.075.
    1. Leonard M.G., Briyal S., Gulati A. Endothelin B receptor agonist, IRL-1620, provides long-term neuroprotection in cerebral ischemia in rats. Brain Res. 2012;1464:14–23. doi: 10.1016/j.brainres.2012.05.005.
    1. Donkor E.S. Stroke in the 21(st) Century: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Res. Treat. 2018;2018:3238165. doi: 10.1155/2018/3238165.
    1. Bamford J., Sandercock P., Dennis M., Burn J., Warlow C. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet. 1991;337:1521–1526. doi: 10.1016/0140-6736(91)93206-O.
    1. Seet R.C.S., Rabinstein A.A. Symptomatic Intracranial Hemorrhage following Intravenous Thrombolysis for Acute Ischemic Stroke: A Critical Review of Case Definitions. Cerebrovasc. Dis. 2012;34:106–114. doi: 10.1159/000339675.
    1. Minnerup J., Wersching H., Schilling M., Schabitz W.R. Analysis of early phase and subsequent phase III stroke studies of neuroprotectants: Outcomes and predictors for success. Exp. Transl. Stroke Med. 2014;6:2. doi: 10.1186/2040-7378-6-2.
    1. Lampl Y., Fleminger G., Gilad R., Galron R., Sarova-Pinhas I., Sokolovsky M. Endothelin in cerebrospinal fluid and plasma of patients in the early stage of ischemic stroke. Stroke J. Cereb. Circ. 1997;28:1951–1955. doi: 10.1161/01.STR.28.10.1951.
    1. Ziv I., Fleminger G., Djaldetti R., Achiron A., Melamed E., Sokolovsky M. Increased plasma endothelin-1 in acute ischemic stroke. Stroke J. Cereb. Circ. 1992;23:1014–1016. doi: 10.1161/01.STR.23.7.1014.
    1. Barone F.C., Ohlstein E.H., Hunter A.J., Campbell C.A., Hadingham S.H., Parsons A.A., Yang Y., Shohami E. Selective antagonism of endothelin-A-receptors improves outcome in both head trauma and focal stroke in rat. J. Cardiovasc. Pharmacol. 2000;36:S357–S361. doi: 10.1097/00005344-200036051-00104.
    1. Briyal S., Gulati A. Endothelin-A receptor antagonist BQ123 potentiates acetaminophen induced hypothermia and reduces infarction following focal cerebral ischemia in rats. Eur. J. Pharmacol. 2010;644:73–79. doi: 10.1016/j.ejphar.2010.06.071.
    1. Legos J.J., Lenhard S.C., Haimbach R.E., Schaeffer T.R., Bentley R.G., McVey M.J., Chandra S., Irving E.A., Andrew A.P., Barone F.C. SB 234551 selective ET(A) receptor antagonism: Perfusion/diffusion MRI used to define treatable stroke model, time to treatment and mechanism of protection. Exp. Neurol. 2008;212:53–62. doi: 10.1016/j.expneurol.2008.03.011.
    1. Tatlisumak T., Carano R.A., Takano K., Opgenorth T.J., Sotak C.H., Fisher M. A novel endothelin antagonist, A-127722, attenuates ischemic lesion size in rats with temporary middle cerebral artery occlusion: A diffusion and perfusion MRI study. Stroke J. Cereb. Circ. 1998;29: 850–857; discussion 857–858. doi: 10.1161/01.STR.29.4.850.
    1. Zhang R.L., Zhang C., Zhang L., Roberts C., Lu M., Kapke A., Cui Y., Ninomiya M., Nagafuji T., Albala B., et al. Synergistic effect of an endothelin type A receptor antagonist, S-0139, with rtPA on the neuroprotection after embolic stroke. Stroke J. Cereb. Circ. 2008;39:2830–2836. doi: 10.1161/STROKEAHA.108.515684.
    1. Briyal S., Gulati A., Gupta Y.K. Effect of combination of endothelin receptor antagonist (TAK-044) and aspirin in middle cerebral artery occlusion model of acute ischemic stroke in rats. Methods Find. Exp. Clin. Pharmacol. 2007;29:257–263. doi: 10.1358/mf.2007.29.4.1106409.
    1. Briyal S., Pant A.B., Gupta Y.K. Protective effect of endothelin antagonist (TAK-044) on neuronal cell viability in in vitro oxygen-glucose deprivation model of stroke. Indian J. Physiol. Pharmacol. 2006;50:157–162.
    1. Chuquet J., Benchenane K., Toutain J., MacKenzie E.T., Roussel S., Touzani O. Selective blockade of endothelin-B receptors exacerbates ischemic brain damage in the rat. Stroke J. Cereb. Circ. 2002;33:3019–3025. doi: 10.1161/01.STR.0000039401.48915.9F.
    1. Ehrenreich H., Oldenburg J., Hasselblatt M., Herms J., Dembowski C., Loffler B.M., Bruck W., Kamrowski-Kruck H., Gall S., Siren A.L., et al. Endothelin B receptor-deficient rats as a subtraction model to study the cerebral endothelin system. Neuroscience. 1999;91:1067–1075. doi: 10.1016/S0306-4522(98)00663-0.
    1. Castaneda M.M., Cubilla M.A., Lopez-Vicchi M.M., Suburo A.M. Endothelinergic cells in the subependymal region of mice. Brain Res. 2010;1321:20–30. doi: 10.1016/j.brainres.2010.01.056.
    1. Gulati A., Kumar A., Morrison S., Shahani B.T. Effect of centrally administered endothelin agonists on systemic and regional blood circulation in the rat: Role of sympathetic nervous system. Neuropeptides. 1997;31:301–309. doi: 10.1016/S0143-4179(97)90063-9.
    1. Koyama Y., Takemura M., Fujiki K., Ishikawa N., Shigenaga Y., Baba A. BQ788, an endothelin ET(B) receptor antagonist, attenuates stab wound injury-induced reactive astrocytes in rat brain. Glia. 1999;26:268–271. doi: 10.1002/(SICI)1098-1136(199905)26:3<268::AID-GLIA8>;2-G.
    1. Sakurai-Yamashita Y., Niwa M., Yamashita K., Kataoka Y., Himeno A., Shigematsu K., Tsutsumi K., Taniyama K. Endothelin receptors in kainic acid-induced neural lesions of rat brain. Neuroscience. 1997;81:565–577. doi: 10.1016/S0306-4522(97)00175-9.
    1. Yamashita K., Niwa M., Kataoka Y., Shigematsu K., Himeno A., Tsutsumi K., Nakano-Nakashima M., Sakurai-Yamashita Y., Shibata S., Taniyama K. Microglia with an endothelin ETB receptor aggregate in rat hippocampus CA1 subfields following transient forebrain ischemia. J. Neurochem. 1994;63:1042–1051. doi: 10.1046/j.1471-4159.1994.63031042.x.
    1. Siren A.L., Lewczuk P., Hasselblatt M., Dembowski C., Schilling L., Ehrenreich H. Endothelin B receptor deficiency augments neuronal damage upon exposure to hypoxia-ischemia in vivo. Brain Res. 2002;945:144–149. doi: 10.1016/S0006-8993(02)02911-6.
    1. Puppala B., Awan I., Briyal S., Mbachu O., Leonard M., Gulati A. Ontogeny of endothelin receptors in the brain, heart, and kidneys of neonatal rats. Brain Dev. 2015;37:206–215. doi: 10.1016/j.braindev.2014.04.008.
    1. Leonard M.G., Gulati A. Endothelin B receptor agonist, IRL-1620, enhances angiogenesis and neurogenesis following cerebral ischemia in rats. Brain Res. 2013;1528:28–41. doi: 10.1016/j.brainres.2013.07.002.
    1. Briyal S., Ranjan A.K., Hornick M.G., Puppala A.K., Luu T., Gulati A. Anti-apoptotic activity of ETB receptor agonist, IRL-1620, protects neural cells in rats with cerebral ischemia. Sci. Rep. 2019;9:10439. doi: 10.1038/s41598-019-46203-x.
    1. Cifuentes E.G., Hornick M.G., Havalad S., Donovan R.L., Gulati A. Neuroprotective Effect of IRL-1620, an Endothelin B Receptor Agonist, on a Pediatric Rat Model of Middle Cerebral Artery Occlusion. Front. Pediatr. 2018;6:310. doi: 10.3389/fped.2018.00310.
    1. Ranjan A.K., Briyal S., Gulati A. Sovateltide (IRL-1620) activates neuronal differentiation and prevents mitochondrial dysfunction in adult mammalian brains following stroke. Sci. Rep. 2020;10:12737. doi: 10.1038/s41598-020-69673-w.
    1. Ranjan A.K., Briyal S., Khandekar D., Gulati A. Sovateltide (IRL-1620) affects neuronal progenitors and prevents cerebral tissue damage after ischemic stroke. Can. J. Physiol. Pharmacol. 2020;98:659–666. doi: 10.1139/cjpp-2020-0164.
    1. Gulati A., Agrawal N., Vibha D., Misra U.K., Paul B., Jain D., Pandian J., Borgohain R. Safety and Efficacy of Sovateltide (IRL-1620) in a Multicenter Randomized Controlled Clinical Trial in Patients with Acute Cerebral Ischemic Stroke. CNS Drugs. 2021;35:85–104. doi: 10.1007/s40263-020-00783-9.
    1. Devlin N.J., Brooks R. EQ-5D and the EuroQol Group: Past, Present and Future. Appl. Health Econ. Health Policy. 2017;15:127–137. doi: 10.1007/s40258-017-0310-5.
    1. Schrag A., Selai C., Jahanshahi M., Quinn N.P. The EQ-5D--a generic quality of life measure-is a useful instrument to measure quality of life in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 2000;69:67–73. doi: 10.1136/jnnp.69.1.67.
    1. Cruz-Cruz C., Martinez-Nunez J.M., Perez M.E., Kravzov-Jinich J., Rios-Castaneda C., Altagracia-Martinez M. Evaluation of the Stroke-Specific Quality-of-Life (SSQOL) Scale in Mexico: A Preliminary Approach. Value Health Reg. Issues. 2013;2:392–397. doi: 10.1016/j.vhri.2013.04.002.
    1. Gulati A. Press Releases. Pharmazz Inc. 2022. [(accessed on 3 March 2022)]. Available online: .
    1. DeTure M.A., Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019;14:32. doi: 10.1186/s13024-019-0333-5.
    1. 2020 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2020 doi: 10.1002/alz.12068.
    1. Crous-Bou M., Minguillon C., Gramunt N., Molinuevo J.L. Alzheimer’s disease prevention: From risk factors to early intervention. Alzheimer’s Res. Ther. 2017;9:71. doi: 10.1186/s13195-017-0297-z.
    1. Weller J., Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res. 2018;7:1161. doi: 10.12688/f1000research.14506.1.
    1. Ballard C., Gauthier S., Corbett A., Brayne C., Aarsland D., Jones E. Alzheimer’s disease. Lancet. 2011;377:1019–1031. doi: 10.1016/S0140-6736(10)61349-9.
    1. Nisbet R.M., Polanco J.C., Ittner L.M., Gotz J. Tau aggregation and its interplay with amyloid-beta. Acta Neuropathol. 2015;129:207–220. doi: 10.1007/s00401-014-1371-2.
    1. Cummings J.L., Ringman J., Vinters H.V. Neuropathologic correlates of trial-related instruments for Alzheimer’s disease. Am. J. Neurodegener. Dis. 2014;3:45–49.
    1. Emanuel E.J. A Middle Ground for Accelerated Drug Approval-Lessons from Aducanumab. JAMA. 2021;326:1367–1368. doi: 10.1001/jama.2021.14861.
    1. Dunn B., Stein P., Temple R., Cavazzoni P. An Appropriate Use of Accelerated Approval—Aducanumab for Alzheimer’s Disease. N. Engl. J. Med. 2021;385:856–857. doi: 10.1056/NEJMc2111960.
    1. Alexander G.C., Knopman D.S., Emerson S.S., Ovbiagele B., Kryscio R.J., Perlmutter J.S., Kesselheim A.S. Revisiting FDA Approval of Aducanumab. N. Engl. J. Med. 2021;385:769–771. doi: 10.1056/NEJMp2110468.
    1. Palmer J.C., Baig S., Kehoe P.G., Love S. Endothelin-converting enzyme-2 is increased in Alzheimer’s disease and up-regulated by Abeta. Am. J. Pathol. 2009;175:262–270. doi: 10.2353/ajpath.2009.081054.
    1. Koyama Y. Endothelin systems in the brain: Involvement in pathophysiological responses of damaged nerve tissues. Biomol. Concepts. 2013;4:335–347. doi: 10.1515/bmc-2013-0004.
    1. Turner A.J., Murphy L.J. Molecular pharmacology of endothelin converting enzymes. Biochem. Pharmacol. 1996;51:91–102. doi: 10.1016/0006-2952(95)02036-5.
    1. Rodriguiz R.M., Gadnidze K., Ragnauth A., Dorr N., Yanagisawa M., Wetsel W.C., Devi L.A. Animals lacking endothelin-converting enzyme-2 are deficient in learning and memory. Genes Brain Behav. 2008;7:418–426. doi: 10.1111/j.1601-183X.2007.00365.x.
    1. Eckman E.A., Watson M., Marlow L., Sambamurti K., Eckman C.B. Alzheimer’s disease beta-amyloid peptide is increased in mice deficient in endothelin-converting enzyme. J. Biol. Chem. 2003;278:2081–2084. doi: 10.1074/jbc.C200642200.
    1. Yamashita K.I., Taniwaki Y., Utsunomiya H., Taniwaki T. Cerebral blood flow reduction associated with orientation for time in amnesic mild cognitive impairment and Alzheimer disease patients. J. Neuroimaging. 2014;24:590–594. doi: 10.1111/jon.12096.
    1. Gulati A., Kumar A., Shahani B.T. Cardiovascular effects of centrally administered endothelin-1 and its relationship to changes in cerebral blood flow. Life Sci. 1996;58:437–445. doi: 10.1016/0024-3205(95)02309-7.
    1. Gulati A., Rebello S., Roy S., Saxena P.R. Cardiovascular effects of centrally administered endothelin-1 in rats. J. Cardiovasc. Pharmacol. 1995;26((Suppl. 3)):S244–S246. doi: 10.1097/00005344-199526003-00074.
    1. Paris D., Humphrey J., Quadros A., Patel N., Crescentini R., Crawford F., Mullan M. Vasoactive effects of A beta in isolated human cerebrovessels and in a transgenic mouse model of Alzheimer’s disease: Role of inflammation. Neurol. Res. 2003;25:642–651. doi: 10.1179/016164103101201940.
    1. Briyal S., Philip T., Gulati A. Endothelin-A receptor antagonists prevent amyloid-beta-induced increase in ETA receptor expression, oxidative stress, and cognitive impairment. J. Alzheimer’s Dis. 2011;23:491–503. doi: 10.3233/JAD-2010-101245.
    1. Druckenbrod N.R., Powers P.A., Bartley C.R., Walker J.W., Epstein M.L. Targeting of endothelin receptor-B to the neural crest. Genesis. 2008;46:396–400. doi: 10.1002/dvg.20415.
    1. Nishikawa K., Ayukawa K., Hara Y., Wada K., Aoki S. Endothelin/endothelin-B receptor signals regulate ventricle-directed interkinetic nuclear migration of cerebral cortical neural progenitors. Neurochem. Int. 2011;58:261–272. doi: 10.1016/j.neuint.2010.11.013.
    1. Yagami T., Ueda K., Asakura K., Kuroda T., Hata S., Sakaeda T., Kambayashi Y., Fujimoto M. Effects of endothelin B receptor agonists on amyloid beta protein (25–35)-induced neuronal cell death. Brain Res. 2002;948:72–81. doi: 10.1016/S0006-8993(02)02951-7.
    1. Leonard M.G., Gulati A. Repeated administration of ET(B) receptor agonist, IRL-1620, produces tachyphylaxis only to its hypotensive effect. Pharmacol. Res. 2009;60:402–410. doi: 10.1016/j.phrs.2009.07.015.
    1. Joshi M.D., Oesterling B.M., Wu C., Gwizdz N., Pais G., Briyal S., Gulati A. Evaluation of liposomal nanocarriers loaded with ETB receptor agonist, IRL-1620, using cell-based assays. Neuroscience. 2016;312:141–152. doi: 10.1016/j.neuroscience.2015.11.016.
    1. Briyal S., Shepard C., Gulati A. Endothelin receptor type B agonist, IRL-1620, prevents beta amyloid (Abeta) induced oxidative stress and cognitive impairment in normal and diabetic rats. Pharmacol. Biochem. Behav. 2014;120:65–72. doi: 10.1016/j.pbb.2014.02.008.
    1. Alizadeh A., Dyck S.M., Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front. Neurol. 2019;10:282. doi: 10.3389/fneur.2019.00282.
    1. Nori S., Ahuja C.S., Fehlings M.G. Translational Advances in the Management of Acute Spinal Cord Injury: What is New? What is Hot? Neurosurgery. 2017;64:119–128. doi: 10.1093/neuros/nyx217.
    1. Donovan J., Kirshblum S. Clinical Trials in Traumatic Spinal Cord Injury. Neurotherapeutics. 2018;15:654–668. doi: 10.1007/s13311-018-0632-5.
    1. Peters C.M., Rogers S.D., Pomonis J.D., Egnaczyk G.F., Keyser C.P., Schmidt J.A., Ghilardi J.R., Maggio J.E., Mantyh P.W. Endothelin receptor expression in the normal and injured spinal cord: Potential involvement in injury-induced ischemia and gliosis. Exp. Neurol. 2003;180:1–13. doi: 10.1016/S0014-4886(02)00023-7.
    1. Kallakuri S., Kreipke C.W., Schafer P.C., Schafer S.M., Rafols J.A. Brain cellular localization of endothelin receptors A and B in a rodent model of diffuse traumatic brain injury. Neuroscience. 2010;168:820–830. doi: 10.1016/j.neuroscience.2010.01.018.
    1. McKenzie A.L., Hall J.J., Aihara N., Fukuda K., Noble L.J. Immunolocalization of endothelin in the traumatized spinal cord: Relationship to blood-spinal cord barrier breakdown. J. Neurotrauma. 1995;12:257–268. doi: 10.1089/neu.1995.12.257.
    1. Guo J., Li Y., He Z., Zhang B., Li Y., Hu J., Han M., Xu Y., Li Y., Gu J., et al. Targeting endothelin receptors A and B attenuates the inflammatory response and improves locomotor function following spinal cord injury in mice. Int. J. Mol. Med. 2014;34:74–82. doi: 10.3892/ijmm.2014.1751.
    1. Forner S., Martini A.C., Andrade E.L., Rae G.A. Neuropathic pain induced by spinal cord injury: Role of endothelin ETA and ETB receptors. Neurosci. Lett. 2016;617:14–21. doi: 10.1016/j.neulet.2016.02.005.
    1. Uesugi M., Kasuya Y., Hayashi K., Goto K. SB209670, a potent endothelin receptor antagonist, prevents or delays axonal degeneration after spinal cord injury. Brain Res. 1998;786:235–239. doi: 10.1016/S0006-8993(97)01431-5.
    1. Laziz I., Larbi A., Grebert D., Sautel M., Congar P., Lacroix M.C., Salesse R., Meunier N. Endothelin as a neuroprotective factor in the olfactory epithelium. Neuroscience. 2011;172:20–29. doi: 10.1016/j.neuroscience.2010.10.063.
    1. Yagami T., Ueda K., Sakaeda T., Okamura N., Nakazato H., Kuroda T., Hata S., Sakaguchi G., Itoh N., Hashimoto Y., et al. Effects of an endothelin B receptor agonist on secretory phospholipase A2-IIA-induced apoptosis in cortical neurons. Neuropharmacology. 2005;48:291–300. doi: 10.1016/j.neuropharm.2004.09.011.
    1. Kurinczuk J.J., White-Koning M., Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum. Dev. 2010;86:329–338. doi: 10.1016/j.earlhumdev.2010.05.010.
    1. Lawn J.E., Blencowe H., Oza S., You D., Lee A.C., Waiswa P., Lalli M., Bhutta Z., Barros A.J., Christian P., et al. Every Newborn: Progress, priorities, and potential beyond survival. Lancet. 2014;384:189–205. doi: 10.1016/S0140-6736(14)60496-7.
    1. Liu L., Oza S., Hogan D., Chu Y., Perin J., Zhu J., Lawn J.E., Cousens S., Mathers C., Black R.E. Global, regional, and national causes of under-5 mortality in 2000-15: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet. 2016;388:3027–3035. doi: 10.1016/S0140-6736(16)31593-8.
    1. Harteman J.C., Nikkels P.G., Benders M.J., Kwee A., Groenendaal F., de Vries L.S. Placental pathology in full-term infants with hypoxic-ischemic neonatal encephalopathy and association with magnetic resonance imaging pattern of brain injury. J. Pediatr. 2013;163:968–995.e2. doi: 10.1016/j.jpeds.2013.06.010.
    1. Azzopardi D., Wyatt J.S., Cady E.B., Delpy D.T., Baudin J., Stewart A.L., Hope P.L., Hamilton P.A., Reynolds E.O. Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatr. Res. 1989;25:445–451. doi: 10.1203/00006450-198905000-00004.
    1. Azzopardi D.V., Strohm B., Edwards A.D., Dyet L., Halliday H.L., Juszczak E., Kapellou O., Levene M., Marlow N., Porter E., et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N. Engl. J. Med. 2009;361:1349–1358. doi: 10.1056/NEJMoa0900854.
    1. Bale G., Mitra S., de Roever I., Sokolska M., Price D., Bainbridge A., Gunny R., Uria-Avellanal C., Kendall G.S., Meek J., et al. Oxygen dependency of mitochondrial metabolism indicates outcome of newborn brain injury. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2019;39:2035–2047. doi: 10.1177/0271678X18777928.
    1. Yildiz E.P., Ekici B., Tatli B. Neonatal hypoxic ischemic encephalopathy: An update on disease pathogenesis and treatment. Expert Rev. Neurother. 2017;17:449–459. doi: 10.1080/14737175.2017.1259567.
    1. Jacobs S.E., Morley C.J., Inder T.E., Stewart M.J., Smith K.R., McNamara P.J., Wright I.M., Kirpalani H.M., Darlow B.A., Doyle L.W., et al. Whole-body hypothermia for term and near-term newborns with hypoxic-ischemic encephalopathy: A randomized controlled trial. Arch. Pediatr. Adolesc. Med. 2011;165:692–700. doi: 10.1001/archpediatrics.2011.43.
    1. Gluckman P.D., Wyatt J.S., Azzopardi D., Ballard R., Edwards A.D., Ferriero D.M., Polin R.A., Robertson C.M., Thoresen M., Whitelaw A., et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: Multicentre randomised trial. Lancet. 2005;365:663–670. doi: 10.1016/S0140-6736(05)17946-X.
    1. Shankaran S., Laptook A.R., Ehrenkranz R.A., Tyson J.E., McDonald S.A., Donovan E.F., Fanaroff A.A., Poole W.K., Wright L.L., Higgins R.D., et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N. Engl. J. Med. 2005;353:1574–1584. doi: 10.1056/NEJMcps050929.
    1. Edwards A.D., Brocklehurst P., Gunn A.J., Halliday H., Juszczak E., Levene M., Strohm B., Thoresen M., Whitelaw A., Azzopardi D. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: Synthesis and meta-analysis of trial data. BMJ. 2010;340:c363. doi: 10.1136/bmj.c363.
    1. Shankaran S., Pappas A., McDonald S.A., Vohr B.R., Hintz S.R., Yolton K., Gustafson K.E., Leach T.M., Green C., Bara R., et al. Childhood outcomes after hypothermia for neonatal encephalopathy. N. Engl. J. Med. 2012;366:2085–2092. doi: 10.1056/NEJMoa1112066.
    1. Gunn A.J., Gluckman P.D., Gunn T.R. Selective head cooling in newborn infants after perinatal asphyxia: A safety study. Pediatrics. 1998;102:885–892. doi: 10.1542/peds.102.4.885.
    1. Higgins R.D., Raju T., Edwards A.D., Azzopardi D.V., Bose C.L., Clark R.H., Ferriero D.M., Guillet R., Gunn A.J., Hagberg H., et al. Hypothermia and other treatment options for neonatal encephalopathy: An executive summary of the Eunice Kennedy Shriver NICHD workshop. J. Pediatr. 2011;159:851–858.e1. doi: 10.1016/j.jpeds.2011.08.004.
    1. Thoresen M., Whitelaw A. Cardiovascular changes during mild therapeutic hypothermia and rewarming in infants with hypoxic-ischemic encephalopathy. Pediatrics. 2000;106:92–99. doi: 10.1542/peds.106.1.92.

Source: PubMed

3
Prenumerera