Biomarkers of postoperative delirium and cognitive dysfunction

Ganna Androsova, Roland Krause, Georg Winterer, Reinhard Schneider, Ganna Androsova, Roland Krause, Georg Winterer, Reinhard Schneider

Abstract

Elderly surgical patients frequently experience postoperative delirium (POD) and the subsequent development of postoperative cognitive dysfunction (POCD). Clinical features include deterioration in cognition, disturbance in attention and reduced awareness of the environment and result in higher morbidity, mortality and greater utilization of social financial assistance. The aging Western societies can expect an increase in the incidence of POD and POCD. The underlying pathophysiological mechanisms have been studied on the molecular level albeit with unsatisfying small research efforts given their societal burden. Here, we review the known physiological and immunological changes and genetic risk factors, identify candidates for further studies and integrate the information into a draft network for exploration on a systems level. The pathogenesis of these postoperative cognitive impairments is multifactorial; application of integrated systems biology has the potential to reconstruct the underlying network of molecular mechanisms and help in the identification of prognostic and diagnostic biomarkers.

Keywords: POCD; POD; biomarker; postoperative cognitive dysfunction; postoperative delirium; systems biology.

Figures

Figure 1
Figure 1
Incidence and time-course of postoperative delirium (POD) and postoperative cognitive dysfunction (POCD) incidence. Y-axis denotes the percentage on POD/POCD incidence registered by the different studies. X-axis denotes the number postoperative days on logarithmic scale. The graph does not include the data of POD/POCD incidence, if it was measured only once postoperatively, if measurement time was not precisely stated or the study includes less than 140 patients. CABG, coronary artery bypass grafting; NCS, noncardiac surgery.
Figure 2
Figure 2
Biomarkers of postoperative delirium (POD) and postoperative cognitive dysfunction (POCD). Biomarkers identified in POD or POCD patients are in blue and pink area respectively. The common POD/POCD biomarkers are presented in the violet area. Font color denotes a marker type: red—dopamine-related marker, green—glucocorticoid-related marker, yellow—cholinergic marker, blue—inflammation-related marker, black—others. 6-SMT, 6-sulfatoxymelatonin; ACh, acetylcholine; AchE, acetylcholinesterase; AMPK, 5′ adenosine monophosphate-activated protein kinase; APOE, apolipoprotein E; BDNF, brain-derived neurotrophic factor; BuChE, butyrylcholinesterase; CD68, cluster of differentiation 68; CRP, C-reactive protein; DRD2, dopamine receptor D2; HLA-DR, human leukocyte antigen-DR; IGF-1, insulin growth factor-1; IgM, immunoglobulin M; IL, interleukin; MCP-1, monocyte chemotactic protein 1; MMP9, matrix metalloproteinase-9; NF-kappaB, nuclear factor kappa B; NR3C1, nuclear receptor family 3, group C, member 1; NSE, neuron specific enolase; PCT, procalcitonin; S100A8, S100 calcium binding protein A8 (myeloid-related protein-8, calgranulin A); S100B, S100 calcium binding protein B; SAA, serum anticholinergic activity; SLC6A3, solute carrier family 6, member 3; Th17, T helper 17 cells; TLR4, toll-like receptor 4; TNF-α, tumor necrosis factor-α; TNFR1, tumor necrosis factor receptor-1; Treg, regulatory T cells; α-syn, alpha-synuclein.
Figure 3
Figure 3
Systems-level interaction of POD and POCD biomarkers. Biomarkers identified in POD and POCD patients are in blue and pink area respectively. The common POD/POCD biomarkers are presented in the violet area. 6-SMT, 6-sulfatoxymelatonin; ACh, acetylcholine; AchE, acetylcholinesterase; AMPK, 5′ adenosine monophosphate-activated protein kinase; APOE, apolipoprotein E; BDNF, brain-derived neurotrophic factor; BuChE, butyrylcholinesterase; CD68, cluster of differentiation 68; CRP, C-reactive protein; DRD2, dopamine receptor D2; HLA-DR, human leukocyte antigen-DR; IGF-1, insulin growth factor-1; IgM, immunoglobulin M; IL, interleukin; MCP-1, monocyte chemotactic protein 1; MMP9, matrix metalloproteinase-9; NF-kappaB, nuclear factor kappa B; NR3C1, nuclear receptor family 3, group C, member 1; NSE, neuron specific enolase; PCT, procalcitonin; S100A8, S100 calcium binding protein A8 (myeloid-related protein-8, calgranulin A); S100B, S100 calcium binding protein B; SAA, serum anticholinergic activity; SLC6A3, solute carrier family 6, member 3; Th17, T helper 17 cells; TLR4, toll-like receptor 4; TNF-α, tumor necrosis factor-α; TNFR1, tumor necrosis factor receptor-1; Treg, regulatory T cells; α-syn, alpha-synuclein.

References

    1. Abbas A., Aukrust P., Dahl T. B., Bjerkeli V., Sagen E. B. L., Michelsen A., et al. . (2012). High levels of S100A12 are associated with recent plaque symptomatology in patients with carotid atherosclerosis. Stroke 43, 1347–1353. 10.1161/STROKEAHA.111.642256
    1. Abelha F. J., Fernandes V., Botelho M., Santos P., Santos A., Machado J. C., et al. . (2012). Apolipoprotein E e4 allele does not increase the risk of early postoperative delirium after major surgery. J. Anesth. 26, 412–421. 10.1007/s00540-012-1326-5
    1. Abildstrom H., Christiansen M., Siersma V. D., Rasmussen L. S. (2004). Apolipoprotein E genotype and cognitive dysfunction after noncardiac surgery. Anesthesiology 101, 855–861. 10.1097/00000542-200410000-00009
    1. Abildstrom H., Rasmussen L. S., Rentowl P., Hanning C. D., Rasmussen H., Kristensen P. A., et al. . (2000). Cognitive dysfunction 1-2 years after non-cardiac surgery in the elderly. ISPOCD group. International study of post-operative cognitive dysfunction. Acta Anaesthesiol. Scand. 44, 1246–1251. 10.1034/j.1399-6576.2000.441010.x
    1. Acheson A., Conover J. C., Fandl J. P., DeChiara T. M., Russell M., Thadani A., et al. . (1995). A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374, 450–453. 10.1038/374450a0
    1. Adamis D., Lunn M., Martin F. C., Treloar A., Gregson N., Hamilton G., et al. . (2009). Cytokines and IGF-I in delirious and non-delirious acutely ill older medical inpatients. Age Ageing 38, 326–332. 10.1093/ageing/afp014
    1. Adamis D., Treloar A., Martin F. C., Gregson N., Hamilton G., Macdonald A. J. D. (2007). APOE and cytokines as biological markers for recovery of prevalent delirium in elderly medical inpatients. Int. J. Geriatr. Psychiatry 22, 688–694. 10.1002/gps.1732
    1. Adams Wilson J. R., Morandi A., Girard T. D., Thompson J. L., Boomershine C. S., Shintani A. K., et al. . (2012). The association of the kynurenine pathway of tryptophan metabolism with acute brain dysfunction during critical illness*. Crit. Care Med. 40, 835–841. 10.1097/CCM.0b013e318236f62d
    1. Ader R., Cohen N., Felten D. (1995). Psychoneuroimmunology: interactions between the nervous system and the immune system. Lancet 345, 99–103. 10.1016/s0140-6736(95)90066-7
    1. Alagiakrishnan K., Wiens C. A. (2004). An approach to drug induced delirium in the elderly. Postgrad. Med. J. 80, 388–393. 10.1136/pgmj.2003.017236
    1. American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders. 5th Edn. Arlington, VA: American Psychiatric Publishing, Inc.
    1. Anagnostaras S. G., Murphy G. G., Hamilton S. E., Mitchell S. L., Rahnama N. P., Nathanson N. M., et al. . (2003). Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat. Neurosci. 6, 51–58. 10.1038/nn992
    1. Andre R., Wheeler R. D., Collins P. D., Luheshi G. N., Pickering-Brown S., Kimber I., et al. . (2003). Identification of a truncated IL-18Rβ mRNA: a putative regulator of IL-18 expressed in rat brain. J. Neuroimmunol. 145, 40–45. 10.1016/j.jneuroim.2003.09.005
    1. Ansaloni L., Catena F., Chattat R., Fortuna D., Franceschi C., Mascitti P., et al. . (2010). Risk factors and incidence of postoperative delirium in elderly patients after elective and emergency surgery. Br. J. Surg. 97, 273–280. 10.1002/bjs.6843
    1. Bai S., Liu S., Guo X., Qin Z., Wang B., Li X., et al. . (2009). Proteome analysis of biomarkers in the cerebrospinal fluid of neuromyelitis optica patients. Mol. Vis. 15, 1638–1648.
    1. Balan S., Leibovitz A., Zila S. O., Ruth M., Chana W., Yassica B., et al. . (2003). The relation between the clinical subtypes of delirium and the urinary level of 6-SMT. J. Neuropsychiatry Clin. Neurosci. 15, 363–366. 10.1176/appi.neuropsych.15.3.363
    1. Barrientos R. M., Hein A. M., Frank M. G., Watkins L. R., Maier S. F. (2012). Intracisternal interleukin-1 receptor antagonist prevents postoperative cognitive decline and neuroinflammatory response in aged rats. J. Neurosci. 32, 14641–14648. 10.1523/JNEUROSCI.2173-12.2012
    1. Bassil F., Fernagut P. O., Bezard E., Meissner W. G. (2014). Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog. Neurobiol. 118, 1–18. 10.1016/j.pneurobio.2014.02.005
    1. Beloosesky Y., Grinblat J., Pirotsky A., Weiss A., Hendel D. (2004). Different C-reactive protein kinetics in post-operative hip-fractured geriatric patients with and without complications. Gerontology 50, 216–222. 10.1159/000078350
    1. Berger R. P., Adelson P. D., Pierce M. C., Dulani T., Cassidy L. D., Kochanek P. M. (2005). Serum neuron-specific enolase, S100B and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J. Neurosurg. 103, 61–68. 10.3171/ped.2005.103.1.0061
    1. Bi Y., Liu S., Yu X., Wang M., Wang Y. (2014). Adaptive and regulatory mechanisms in aged rats with postoperative cognitive dysfunction. Neural Regen. Res. 9, 534–539. 10.4103/1673-5374.130084
    1. Bianchi R., Adami C., Giambanco I., Donato R. (2007). S100B binding to RAGE in microglia stimulates COX-2 expression. J. Leukoc. Biol. 81, 108–118. 10.1189/jlb.0306198
    1. Bisschop P. H., de Rooij S. E., Zwinderman A. H., van Oosten H. E., van Munster B. C. (2011). Cortisol, insulin and glucose and the risk of delirium in older adults with hip fracture. J. Am. Geriatr. Soc. 59, 1692–1696. 10.1111/j.1532-5415.2011.03575.x
    1. Boraschi D., Lucchesi D., Hainzl S., Leitner M., Maier E., Mangelberger D., et al. . (2011). IL-37: a new anti-inflammatory cytokine of the IL-1 family. Eur. Cytokine Netw. 22, 127–147. 10.1684/ecn.2011.0288
    1. Borovikova L. V., Ivanova S., Zhang M., Yang H., Botchkina G. I., Watkins L. R., et al. . (2000). Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462. 10.1038/35013070
    1. Bossù P., Ciaramella A., Salani F., Bizzoni F., Varsi E., Di Iulio F., et al. . (2008). Interleukin-18 produced by peripheral blood cells is increased in Alzheimer’s disease and correlates with cognitive impairment. Brain Behav. Immun. 22, 487–492. 10.1016/j.bbi.2007.10.001
    1. Bossù P., Ciaramella A., Salani F., Vanni D., Palladino I., Caltagirone C., et al. . (2010). Interleukin-18, from neuroinflammation to Alzheimer’s disease. Curr. Pharm. Des. 16, 4213–4224. 10.2174/138161210794519147
    1. Bryson G. L., Wyand A., Wozny D., Rees L., Taljaard M., Nathan H. (2011). Une étude de cohorte prospective évaluant les associations entre le delirium, le dysfonctionnement cognitif postopératoire et le génotype de l’apolipoprotéine E après une chirurgie ouverte de l’aorte. Can. J. Anesth. Can. D’anesthésie 58, 246–255. 10.1007/s12630-010-9446-6
    1. Brzezinski A. (1997). Melatonin in humans. N. Engl. J. Med. 336, 186–195. 10.1056/NEJM199701163360306
    1. Burkhart C. S., Dell-Kuster S., Gamberini M., Moeckli A., Grapow M., Filipovic M., et al. . (2010). Modifiable and nonmodifiable risk factors for postoperative delirium after cardiac surgery with cardiopulmonary bypass. J. Cardiothorac. Vasc. Anesth. 24, 555–559. 10.1053/j.jvca.2010.01.003
    1. Calne D. B., Mcgeer E., Eisen A., Spencer P. (1986). Alzheimer’s disease, Parkinson’s disease and motoneurone disease: abiotropic interaction between agening and environment? Lancet 328, 1067–1070. 10.1016/s0140-6736(86)90469-1
    1. Cao L., Wang K., Gu T., Du B., Song J. (2014). Association between APOE epsilon 4 allele and postoperative cognitive dysfunction: a meta-analysis. Int. J. Neurosci. 124, 478–485. 10.3109/00207454.2013.860601
    1. Cape E., Hall R. J., van Munster B. C., de Vries A., Howie S. E. M., Pearson A., et al. . (2014). Cerebrospinal fluid markers of neuroinflammation in delirium: a role for interleukin-1β in delirium after hip fracture. J. Psychosom. Res. 77, 219–225. 10.1016/j.jpsychores.2014.06.014
    1. Carrié A., Jun L., Bienvenu T., Vinet M. C., McDonell N., Couvert P., et al. . (1999). A new member of the IL-1 receptor family highly expressed in hippocampus and involved in X-linked mental retardation. Nat. Genet. 23, 25–31. 10.1038/12623
    1. Cerejeira J., Batista P., Nogueira V., Vaz-Serra A., Mukaetova-Ladinska E. B. (2013). The stress response to surgery and postoperative delirium: evidence of hypothalamic-pituitary-adrenal axis hyperresponsiveness and decreased suppression of the GH/IGF-1 Axis. J. Geriatr. Psychiatry Neurol. 26, 185–194. 10.1177/0891988713495449
    1. Cerejeira J. M. S., Nogueira V., Luís P., Vaz-Serra A., Mukaetova-Ladinska E. B. (2012). The cholinergic system and inflammation: common pathways in delirium pathophysiology. J. Am. Geriatr. Soc. 60, 669–675. 10.1111/j.1532-5415.2011.03883.x
    1. Chandel N. S., Trzyna W. C., McClintock D. S., Schumacker P. T. (2000). Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J. Immunol. 165, 1013–1021. 10.4049/jimmunol.165.2.1013
    1. Chang K. A., Kim H. J., Suh Y. H. (2012). The role of S100a9 in the pathogenesis of Alzheimer’s disease: the therapeutic effects of S100a9 knockdown or knockout. Neurodegener. Dis. 10, 27–29. 10.1159/000333781
    1. Chang Y.-L., Tsai Y.-F., Lin P.-J., Chen M.-C., Liu C.-Y. (2008). Prevalence and risk factors for postoperative delirium in a cardiovascular intensive care unit. Am. J. Crit. Care 17, 567–575.
    1. Cheng Q., Wang J., Wu A., Zhang R., Li L., Yue Y. (2013). Can urinary excretion rate of 8-isoprostrane and malonaldehyde predict postoperative cognitive dysfunction in aging? Neurol. Sci. 34, 1665–1669. 10.1007/s10072-013-1314-z
    1. Chiaretti A., Piastra M., Polidori G., Di Rocco C., Caresta E., Antonelli A., et al. . (2003). Correlation between neurotrophic factor expression and outcome of children with severe traumatic brain injury. Intensive Care Med. 29, 1329–1338. 10.1007/s00134-003-1852-6
    1. Cho Y.-W., Motamedi G. K., Laufenberg I., Sohn S.-I., Lim J.-G., Lee H., et al. . (2003). A Korean kindred with autosomal dominant nocturnal frontal lobe epilepsy and mental retardation. Arch. Neurol. 60, 1625–1632. 10.1001/archneur.60.11.1625
    1. Cibelli M., Fidalgo A. R., Terrando N., Ma D., Monaco C., Feldmann M., et al. . (2010). Role of interleukin-1beta in postoperative cognitive dysfunction. Ann. Neurol. 68, 360–368. 10.1002/ana.22082
    1. Colkesen Y., Giray S., Ozenli Y., Sezgin N., Coskun I. (2013). Relation of serum cortisol to delirium occurring after acute coronary syndromes. Am. J. Emerg. Med. 31, 161–165. 10.1016/j.ajem.2012.07.001
    1. Cong W. N., Wang R., Cai H., Daimon C. M., Scheibye-Knudsen M., Bohr V. A., et al. . (2013). Long-term artificial sweetener Acesulfame Potassium treatment alters neurometabolic functions in C57BL/6J mice. PLoS One 8:e70257. 10.1371/journal.pone.0070257
    1. Control Prevention Centers for Disease (2010). National hospital discharge survey: procedures by selected patient characteristics. Number and percentage with and without procedures. CDC/NCHS Natl. Hosp. Disch. Surv. Available online at:
    1. Costelloe C., Watson M., Murphy A., McQuillan K., Loscher C., Armstrong M. E., et al. . (2008). IL-1F5 mediates anti-inflammatory activity in the brain through induction of IL-4 following interaction with SIGIRR/TIR8. J. Neurochem. 105, 1960–1969. 10.1111/j.1471-4159.2008.05304.x
    1. Cras P., Kawai M., Lowery D., Gonzalez-DeWhitt P., Greenberg B., Perry G. (1991). Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc. Natl. Acad. Sci. U S A 88, 7552–7556. 10.1073/pnas.88.17.7552
    1. Culley D. J., Baxter M., Yukhananov R., Crosby G. (2003). The memory effects of general anesthesia persist for weeks in young and aged rats. Anesth. Analg. 96, 1004–1009. 10.1213/01.ane.0000052712.67573.12
    1. Deguchi A., Soh J.-W., Li H., Pamukcu R., Thompson W. J., Weinstein I. B. (2002). Vasodilator-stimulated phosphoprotein (VASP) phosphorylation provides a biomarker for the action of exisulind and related agents that activate protein kinase G. Mol. Cancer Ther. 1, 803–809.
    1. Deiner S., Silverstein J. H. (2009). Postoperative delirium and cognitive dysfunction. Br. J. Anaesth. 103(Suppl.), i41–i46. 10.1093/bja/aep291
    1. de Jonghe A., van Munster B. C., Fekkes D., van Oosten H. E., de Rooij S. E. (2012). The tryptophan depletion theory in delirium: not confirmed in elderly hip fracture patients. Psychosomatics 53, 236–243. 10.1016/j.psym.2011.09.009
    1. de Jonghe A., van Munster B. C., Goslings J. C., Kloen P., van Rees C., Wolvius R., et al. . (2014). Effect of melatonin on incidence of delirium among patients with hip fracture: a multicentre, double-blind randomized controlled trial. CMAJ 186, E547–E556. 10.1503/cmaj.140495
    1. Dixson L., Walter H., Schneider M., Erk S., Schäfer A., Haddad L., et al. . (2014). Identification of gene ontologies linked to prefrontal-hippocampal functional coupling in the human brain. Proc. Natl. Acad. Sci. U S A 111, 9657–9662. 10.1073/pnas.1404082111
    1. Drake P. M., Cho W., Li B., Prakobphol A., Johansen E., Anderson N. L., et al. . (2010). Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clin. Chem. 56, 223–236. 10.1373/clinchem.2009.136333
    1. Eckert T., Tang C., Eidelberg D. (2007). Assessment of the progression of Parkinson’s disease: a metabolic network approach. Lancet Neurol. 6, 926–932. 10.1016/S1474-4422(07)70245-4
    1. Elie M., Cole M. G., Primeau F. J., Bellavance F. (1998). Delirium risk factors in elderly hospitalized patients. J. Gen. Intern. Med. 13, 204–212. 10.1046/j.1525-1497.1998.00047.x
    1. Ely E. W., Girard T. D., Shintani A. K., Jackson J. C., Gordon S. M., Thomason J. W. W., et al. . (2007). Apolipoprotein E4 polymorphism as a genetic predisposition to delirium in critically ill patients. Crit. Care Med. 35, 112–117. 10.1097/
    1. Everitt B. J., Robbins T. W. (1997). Central cholinergic systems and cognition. Annu. Rev. Psychol. 48, 649–684. 10.1146/annurev.psych.48.1.649
    1. Fasano A. (2011). Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity and cancer. Physiol. Rev. 91, 151–175. 10.1152/physrev.00003.2008
    1. Fasano A., Not T., Wang W., Uzzau S., Berti I., Tommasini A., et al. . (2000). Zonulin, a newly discovered modulator of intestinal permeability and its expression in coeliac disease. Lancet 355, 1518–1519. 10.1016/s0140-6736(00)02169-3
    1. Feng Y., Niu T., Xing H., Xu X., Chen C., Peng S., et al. . (2004). A common haplotype of the nicotine acetylcholine receptor alpha 4 subunit gene is associated with vulnerability to nicotine addiction in men. Am. J. Hum. Genet. 75, 112–121. 10.1086/422194
    1. Field R. H., Gossen A., Cunningham C. (2012). Prior pathology in the basal forebrain cholinergic system predisposes to inflammation-induced working memory deficits: reconciling inflammatory and cholinergic hypotheses of delirium. J. Neurosci. 32, 6288–6294. 10.1523/JNEUROSCI.4673-11.2012
    1. Finfer S., Chittock D. R., Su S. Y.-S., Blair D., Foster D., Dhingra V., et al. . (2009). Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 360, 1283–1297. 10.1056/NEJMoa0810625
    1. Fisher A. (2008). Cholinergic treatments with emphasis on m1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics 5, 433–442. 10.1016/j.nurt.2008.05.002
    1. Flacker J. M., Cummings V., Mach J. R., Bettin K., Kiely D. K., Wei J. (1998). The association of serum anticholinergic activity with delirium in elderly medical patients. Am. J. Geriatr. Psychiatry 6, 31–41. 10.1097/00019442-199800610-00005
    1. Flacker J. M., Lipsitz L. A. (1999). Serum anticholinergic activity changes with acute illness in elderly medical patients. J. Gerontol. A Biol. Sci. Med. Sci. 54, M12–M16. 10.1093/gerona/54.1.m12
    1. Foell D., Frosch M., Sorg C., Roth J. (2004). Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation. Clin. Chim. Acta 344, 37–51. 10.1016/j.cccn.2004.02.023
    1. Fox C., Smith T., Maidment I., Chan W.-Y., Bua N., Myint P. K., et al. . (2014). Effect of medications with anti-cholinergic properties on cognitive function, delirium, physical function and mortality: a systematic review. Age Ageing 43, 604–615. 10.1093/ageing/afu096
    1. Frost R. A., Nystrom G. J., Lang C. H. (2003). Tumor necrosis factor-alpha decreases insulin-like growth factor-I messenger ribonucleic acid expression in C2C12 myoblasts via a Jun N-terminal kinase pathway. Endocrinology 144, 1770–1779. 10.1210/en.2002-220808
    1. Fujita K. A., Ostaszewski M., Matsuoka Y., Ghosh S., Glaab E., Trefois C., et al. . (2014). Integrating pathways of parkinson’s disease in a molecular interaction map. Mol. Neurobiol. 49, 88–102. 10.1007/s12035-013-8489-4
    1. Girard T. D., Ware L. B., Bernard G. R., Pandharipande P. P., Thompson J. L., Shintani A. K., et al. . (2012). Associations of markers of inflammation and coagulation with delirium during critical illness. Intensive Care Med. 38, 1965–1973. 10.1007/s00134-012-2678-x
    1. Grandi C., Tomasi C. D., Fernandes K., Stertz L., Kapczinski F., Quevedo J., et al. . (2011). Brain-derived neurotrophic factor and neuron-specific enolase, but not S100β, levels are associated to the occurrence of delirium in intensive care unit patients. J. Crit. Care 26, 133–137. 10.1016/j.jcrc.2010.10.006
    1. Greene N. H., Attix D. K., Weldon B. C., Smith P. J., McDonagh D. L., Monk T. G. (2009). Measures of executive function and depression identify patients at risk for postoperative delirium. Anesthesiology 110, 788–795. 10.1097/aln.0b013e31819b5ba6
    1. Gross A. L., Jones R. N., Habtemariam D. A., Fong T. G., Tommet D., Quach L., et al. . (2012). Delirium and long-term cognitive trajectory among persons with dementia. Arch. Intern. Med. 172, 1324–1331. 10.1001/archinternmed.2012.3414
    1. Gunther M. L., Morandi A., Krauskopf E., Pandharipande P., Girard T. D., Jackson J. C., et al. . (2012). The association between brain volumes, delirium duration and cognitive outcomes in intensive care unit survivors. Crit. Care Med. 40, 2022–2032. 10.1097/CCM.0b013e318250acc0
    1. Gutcher I., Urich E., Wolter K., Prinz M., Becher B. (2006). Interleukin 18-independent engagement of interleukin 18 receptor-alpha is required for autoimmune inflammation. Nat. Immunol. 7, 946–953. 10.1038/ni1377
    1. Hasselmo M. E. (1995). Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav. Brain Res. 67, 1–27. 10.1016/0166-4328(94)00113-t
    1. Hatano Y., Narumoto J., Shibata K., Matsuoka T., Taniguchi S., Hata Y., et al. . (2013). White-matter hyperintensities predict delirium after cardiac surgery. Am. J. Geriatr. Psychiatry 21, 938–945. 10.1016/j.jagp.2013.01.061
    1. Hersch S. M., Gutekunst C. A., Rees H. D., Heilman C. J., Levey A. I. (1994). Distribution of m1–m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. J. Neurosci. 14, 3351–3363.
    1. Hirose S., Iwata H., Akiyoshi H., Kobayashi K., Ito M., Wada K., et al. . (1999). A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsy. Neurology 53, 1749–1753. 10.1212/wnl.53.8.1749
    1. Hshieh T. T., Fong T. G., Marcantonio E. R., Inouye S. K. (2008). Cholinergic deficiency hypothesis in delirium: a synthesis of current evidence. J. Gerontol. A Biol. Sci. Med. Sci. 63, 764–772. 10.1093/gerona/63.7.764
    1. Huang E. J., Reichardt L. F. (2001). Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736. 10.1146/annurev.neuro.24.1.677
    1. Huat T. J., Khan A. A., Pati S., Mustafa Z., Abdullah J. M., Jaafar H. (2014). IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells. BMC Neurosci. 15:91. 10.1186/1471-2202-15-91
    1. Hudetz J. A., Gandhi S. D., Iqbal Z., Patterson K. M., Pagel P. S. (2011). Elevated postoperative inflammatory biomarkers are associated with short- and medium-term cognitive dysfunction after coronary artery surgery. J. Anesth. 25, 1–9. 10.1007/s00540-010-1042-y
    1. Hudetz J. A., Patterson K. M., Byrne A. J., Pagel P. S., Warltier D. C. (2009). Postoperative delirium is associated with postoperative cognitive dysfunction at one week after cardiac surgery with cardiopulmonary bypass. Psychol. Rep. 105, 921–932. 10.2466/pr0.105.3.921-932
    1. Ignatius M. J., Gebicke-Härter P. J., Skene J. H., Schilling J. W., Weisgraber K. H., Mahley R. W., et al. . (1986). Expression of apolipoprotein E during nerve degeneration and regeneration. Proc. Natl. Acad. Sci. U S A 83, 1125–1129. 10.1073/pnas.83.4.1125
    1. Inouye S. K. (2006). Delirium in older persons. N. Engl. J. Med. 354, 1157–1165. 10.1056/NEJMra052321
    1. Inouye S. K., van Dyck C. H., Alessi C. A., Balkin S., Siegal A. P., Horwitz R. I. (1990). Clarifying confusion: the confusion assessment method: a new method for detection of delirium. Ann. Intern. Med. 113, 941–948. 10.7326/0003-4819-113-12-941
    1. Jackson J. C., Gordon S. M., Hart R. P., Hopkins R. O., Ely E. W. (2004). The association between delirium and cognitive decline: a review of the empirical literature. Neuropsychol. Rev. 14, 87–98. 10.1023/b:nerv.0000028080.39602.17
    1. Jin T., Hu L. S., Chang M., Wu J., Winblad B., Zhu J. (2007). Proteomic identification of potential protein markers in cerebrospinal fluid of GBS patients. Eur. J. Neurol. 14, 563–568. 10.1111/j.1468-1331.2007.01761.x
    1. Kang J., Lemaire H. G., Unterbeck A., Salbaum J. M., Masters C. L., Grzeschik K. H., et al. . (1987). The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736. 10.1038/325733a0
    1. Karyekar C. S., Fasano A., Raje S., Lu R., Dowling T. C., Eddington N. D. (2003). Zonula occludens toxin increases the permeability of molecular weight markers and chemotherapeutic agents across the bovine brain microvessel endothelial cells. J. Pharm. Sci. 92, 414–423. 10.1002/jps.10310
    1. Katan M., Christ-Crain M. (2010). The stress hormone copeptin: a new prognostic biomarker in acute illness. Swiss Med. Wkly. 140:w13101. 10.4414/smw.2010.13101
    1. Kazmierski J., Banys A., Latek J., Bourke J., Jaszewski R. (2013). Cortisol levels and neuropsychiatric diagnosis as markers of postoperative delirium: a prospective cohort study. Crit. Care 17:R38. 10.1186/cc12548
    1. Kazmierski J., Banys A., Latek J., Bourke J., Jaszewski R. (2014a). Raised IL-2 and TNF-α concentrations are associated with postoperative delirium in patients undergoing coronary-artery bypass graft surgery. Int. Psychogeriatr. 26, 845–855. 10.1017/s1041610213002378
    1. Kazmierski J., Banys A., Latek J., Bourke J., Jaszewski R., Sobow T., et al. . (2014b). Mild cognitive impairment with associated inflammatory and cortisol alterations as independent risk factor for postoperative delirium. Dement. Geriatr. Cogn. Disord. 38, 65–78. 10.1159/000357454
    1. Khan B. A., Zawahiri M., Campbell N. L., Boustani M. A. (2011). Biomarkers for delirium–a review. J. Am. Geriatr. Soc. 59(Suppl. 2), S256–S261. 10.1111/j.1532-5415.2011.03702.x
    1. Kohannim O., Hua X., Hibar D. P., Lee S., Chou Y.-Y. Y., Toga A. W., et al. . (2010). Boosting power for clinical trials using classifiers based on multiple biomarkers. Neurobiol. Aging 31, 1429–1442. 10.1016/j.neurobiolaging.2010.04.022
    1. Kong F.-J., Ma L.-L., Zhang H.-H., Zhou J.-Q. (2015). Alpha 7 nicotinic acetylcholine receptor agonist GTS-21 mitigates isoflurane-induced cognitive impairment in aged rats. J. Surg. Res. 194, 255–261. 10.1016/j.jss.2014.09.043
    1. Koning J. P., Vehof J., Burger H., Wilffert B., Al Hadithy A., Alizadeh B., et al. . (2012). Association of two DRD2 gene polymorphisms with acute and tardive antipsychotic-induced movement disorders in young Caucasian patients. Psychopharmacology (Berl) 219, 727–736. 10.1007/s00213-011-2394-1
    1. Kosar C. M., Tabloski P. A., Travison T. G., Jones R. N., Schmitt E. M., Puelle M. R., et al. (2014). Effect of preoperative pain and depressive symptoms on the risk of postoperative delirium: a prospective cohort study. Lancet Psychiatry 1, 431–436. 10.1016/s2215-0366(14)00006-6
    1. Kowall N. W., Beal M. F., Busciglio J., Duffy L. K., Yankner B. A. (1991). An in vivo model for the neurodegenerative effects of beta amyloid and protection by substance P. Proc. Natl. Acad. Sci. U S A 88, 7247–7251. 10.1073/pnas.88.16.7247
    1. Kukreti R., Tripathi S., Bhatnagar P., Gupta S., Chauhan C., Kubendran S., et al. . (2006). Association of DRD2 gene variant with schizophrenia. Neurosci. Lett. 392, 68–71. 10.1016/j.neulet.2005.08.059
    1. Lambert N. M., Hartsough C. S. (1998). Prospective study of tobacco smoking and substance dependencies among samples of ADHD and non-ADHD participants. J. Learn. Disabil. 31, 533–544. 10.1177/002221949803100603
    1. Le Y., Liu S., Peng M., Tan C., Liao Q., Duan K., et al. . (2014). Aging differentially affects the loss of neuronal dendritic spine, neuroinflammation and memory impairment at rats after surgery. PLoS One 9:e106837. 10.1371/journal.pone.0106837
    1. Lemstra A. W., Kalisvaart K. J., Vreeswijk R., van Gool W. A., Eikelenboom P. (2008). Pre-operative inflammatory markers and the risk of postoperative delirium in elderly patients. Int. J. Geriatr. Psychiatry 23, 943–948. 10.1002/gps.2015
    1. Leung J. M., Sands L. P., Mullen E. A., Wang Y., Vaurio L. (2005). Are preoperative depressive symptoms associated with postoperative delirium in geriatric surgical patients? J. Gerontol. A Biol. Sci. Med. Sci. 60, 1563–1568. 10.1093/gerona/60.12.1563
    1. Leung J. M., Sands L. P., Wang Y., Poon A., Kwok P., Kane J. P., et al. . (2007). Apolipoprotein E e4 allele increases the risk of early postoperative delirium in older patients undergoing noncardiac surgery. Anesthesiology 107, 406–411. 10.1097/01.anes.0000278905.07899.df
    1. Levey A. I. (1996). Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc. Natl. Acad. Sci. U S A 93, 13541–13546. 10.1073/pnas.93.24.13541
    1. Li M. D., Beuten J., Ma J. Z., Payne T. J., Lou X.-Y., Garcia V., et al. . (2005). Ethnic- and gender-specific association of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) with nicotine dependence. Hum. Mol. Genet. 14, 1211–1219. 10.1093/hmg/ddi132
    1. Li X., Wen D.-X., Zhao Y.-H., Hang Y.-N., Mandell M. S. (2013b). Increase of beta-amyloid and C-reactive protein in liver transplant recipients with postoperative cognitive dysfunction. Hepatobiliary Pancreat. Dis. Int. 12, 370–376. 10.1016/s1499-3872(13)60058-2
    1. Li Y. C., Xi C. H., An Y. F., Dong W. H., Zhou M. (2012). Perioperative inflammatory response and protein S-100β concentrations–relationship with post-operative cognitive dysfunction in elderly patients. Acta Anaesthesiol. Scand. 56, 595–600. 10.1111/j.1399-6576.2011.02616.x
    1. Li R. L., Zhang Z. Z., Peng M., Wu Y., Zhang J. J., Wang C. Y., et al. . (2013a). Postoperative impairment of cognitive function in old mice: a possible role for neuroinflammation mediated by HMGB1, S100B and RAGE. J. Surg. Res. 185, 815–824. 10.1016/j.jss.2013.06.043
    1. Lili X., Zhiyong H., Jianjun S. (2013). A preliminary study of the effects of ulinastatin on early postoperative cognition function in patients undergoing abdominal surgery. Neurosci. Lett. 541, 15–19. 10.1016/j.neulet.2013.02.008
    1. Liu P., Li Y., Wang X., Zou X., Zhang D., Wang D., et al. . (2013). High serum interleukin-6 level is associated with increased risk of delirium in elderly patients after noncardiac surgery: a prospective cohort study. Chin. Med. J. (Engl) 126, 3621–3627. 10.3760/cma.j.issn.0366-6999.20130211
    1. Lu R., Wang W., Uzzau S., Vigorito R., Zielke H. R., Fasano A. (2000). Affinity purification and partial characterization of the zonulin/zonula occludens toxin (Zot) receptor from human brain. J. Neurochem. 74, 320–326. 10.1046/j.1471-4159.2000.0740320.x
    1. Lu S.-M., Yu C.-J., Liu Y.-H., Dong H.-Q., Zhang X., Zhang S.-S., et al. . (2015). S100A8 contributes to postoperative cognitive dysfunction in mice undergoing tibial fracture surgery by activating the TLR4/MyD88 pathway. Brain Behav. Immun. 44, 221–234. 10.1016/j.bbi.2014.10.011
    1. Lupien S. J., Gillin C. J., Hauger R. L. (1999). Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: a dose-response study in humans. Behav. Neurosci. 113, 420–430. 10.1037/0735-7044.113.3.420
    1. Macdonald A., Adamis D., Treloar A., Martin F. (2007). C-reactive protein levels predict the incidence of delirium and recovery from it. Age Ageing 36, 222–225. 10.1093/ageing/afl121
    1. Mach J. R., Dysken M. W., Kuskowski M., Richelson E., Holden L., Jilk K. M. (1995). Serum anticholinergic activity in hospitalized older persons with delirium: a preliminary study. J. Am. Geriatr. Soc. 43, 491–495. 10.1111/j.1532-5415.1995.tb06094.x
    1. Makoff A. J., Graham J. M., Arranz M. J., Forsyth J., Li T., Aitchison K. J., et al. . (2000). Association study of dopamine receptor gene polymorphisms with drug-induced hallucinations in patients with idiopathic Parkinson’s disease. Pharmacogenetics 10, 43–48. 10.1097/00008571-200002000-00006
    1. Manenschijn L., van Rossum E. F. C., Jetten A. M., de Rooij S. E., van Munster B. C. (2011). Glucocorticoid receptor haplotype is associated with a decreased risk of delirium in the elderly. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156B, 316–321. 10.1002/ajmg.b.31165
    1. Mantovani A., Locati M., Polentarutti N., Vecchi A., Garlanda C. (2004). Extracellular and intracellular decoys in the tuning of inflammatory cytokines and Toll-like receptors: the new entry TIR8/SIGIRR. J. Leukoc. Biol. 75, 738–742. 10.1189/jlb.1003473
    1. Mathew J. P., Grocott H. P., Phillips-Bute B., Stafford-Smith M., Laskowitz D. T., Rossignol D., et al. . (2003). Lower endotoxin immunity predicts increased cognitive dysfunction in elderly patients after cardiac surgery. Stroke 34, 508–513. 10.1161/01.str.0000053844.09493.58
    1. McAvay G. J., Van Ness P. H., Bogardus S. T., Zhang Y., Leslie D. L., Leo-Summers L. S., et al. . (2007). Depressive symptoms and the risk of incident delirium in older hospitalized adults. J. Am. Geriatr. Soc. 55, 684–691. 10.1111/j.1532-5415.2007.01150.x
    1. McDonagh D. L., Mathew J. P., White W. D., Phillips-Bute B., Laskowitz D. T., Podgoreanu M. V., et al. . (2010). Cognitive function after major noncardiac surgery, apolipoprotein E4 genotype and biomarkers of brain injury. Anesthesiology 112, 852–859. 10.1097/ALN.0b013e3181d31fd7
    1. Mick E., Kim J. W., Biederman J., Wozniak J., Wilens T., Spencer T., et al. . (2008). Family based association study of pediatric bipolar disorder and the dopamine transporter gene (SLC6A3). Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B, 1182–1185. 10.1002/ajmg.b.30745
    1. Minden S. L., Carbone L. A., Barsky A., Borus J. F., Fife A., Fricchione G. L., et al. . (2005). Predictors and outcomes of delirium. Gen. Hosp. Psychiatry 27, 209–214. 10.1016/j.genhosppsych.2004.12.004
    1. Moller J. T., Cluitmans P., Rasmussen L. S., Houx P., Rasmussen H., Canet J., et al. . (1998). Long-term postoperative cognitive dysfunction in the elderly: ISPOCD1 study. Lancet 351, 857–861. 10.1016/s0140-6736(97)07382-0
    1. Monk T. G., Weldon B. C., Garvan C. W., Dede D. E., van der Aa M. T., Heilman K. M., et al. . (2008). Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 108, 18–30. 10.1097/01.anes.0000296071.19434.1e
    1. Muglia P., Vicente A. M., Verga M., King N., Macciardi F., Kennedy J. L. (2003). Association between the BDNF gene and schizophrenia. Mol. Psychiatry 8, 146–147. 10.1038/sj.mp.4001221
    1. Mussi C., Ferrari R., Ascari S., Salvioli G. (1999). Importance of serum anticholinergic activity in the assessment of elderly patients with delirium. J. Geriatr. Psychiatry Neurol. 12, 82–86. 10.1177/089198879901200208
    1. Newman M. F., Kirchner J. L., Phillips-Bute B., Gaver V., Grocott H., Jones R. H., et al. . (2001). Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N. Engl. J. Med. 344, 395–402. 10.1056/NEJM200102083440601
    1. Norton P. A., Comunale M. A., Krakover J., Rodemich L., Pirog N., D’Amelio A., et al. . (2008). N-linked glycosylation of the liver cancer biomarker GP73. J. Cell. Biochem. 104, 136–149. 10.1002/jcb.21610
    1. Ojala J., Alafuzoff I., Herukka S. K., van Groen T., Tanila H., Pirttilä T. (2009). Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol. Aging 30, 198–209. 10.1016/j.neurobiolaging.2007.06.006
    1. Olivecrona Z., Koskinen L. O. D. (2012). The release of S-100B and NSE in severe traumatic head injury is associated with APOE ε4. Acta Neurochir. (Wien) 154, 675–680. 10.1007/s00701-012-1292-6
    1. Pandharipande P. P., Morandi A., Adams J. R., Girard T. D., Thompson J. L., Shintani A. K., et al. . (2009). Plasma tryptophan and tyrosine levels are independent risk factors for delirium in critically ill patients. Intensive Care Med. 35, 1886–1892. 10.1007/s00134-009-1573-6
    1. Papadopoulou E., Davilas E., Sotiriou V., Georgakopoulos E., Georgakopoulou S., Koliopanos A., et al. . (2006). Cell-free DNA and RNA in plasma as a new molecular marker for prostate and breast cancer. Ann. N Y Acad. Sci. 1075, 235–243. 10.1196/annals.1368.032
    1. Pearson-Leary J., McNay E. C. (2012). Intrahippocampal administration of amyloid-β(1–42) oligomers acutely impairs spatial working memory, insulin signaling and hippocampal metabolism. J. Alzheimers Dis. 30, 413–422. 10.3233/JAD-2012-112192
    1. Pepys M. B., Hirschfield G. M. (2003). C-reactive protein: a critical update. J. Clin. Invest. 111, 1805–1812. 10.1172/jci18921
    1. Perroud N., Paoloni-Giacobino A., Prada P., Olié E., Salzmann A., Nicastro R., et al. . (2011). Increased methylation of glucocorticoid receptor gene (NR3C1) in adults with a history of childhood maltreatment: a link with the severity and type of trauma. Transl. Psychiatry 1:e59. 10.1038/tp.2011.60
    1. Pfister D., Siegemund M., Dell-Kuster S., Smielewski P., Rüegg S., Strebel S. P., et al. . (2008). Cerebral perfusion in sepsis-associated delirium. Crit. Care 12:R63. 10.1186/cc6891
    1. Plaschke K., Hill H., Engelhardt R., Thomas C., Von Haken R., Scholz M., et al. . (2007a). EEG changes and serum anticholinergic activity measured in patients with delirium in the intensive care unit. Anaesthesia 62, 1217–1223. 10.1111/j.1365-2044.2007.05255.x
    1. Plaschke K., Thomas C., Engelhardt R., Teschendorf P., Hestermann U., Weigand M. A., et al. . (2007b). Significant correlation between plasma and CSF anticholinergic activity in presurgical patients. Neurosci. Lett. 417, 16–20. 10.1016/j.neulet.2007.02.015
    1. Pol R. A., van Leeuwen B. L., Izaks G. J., Reijnen M. M. P. J., Visser L., Tielliu I. F. J., et al. . (2014). C-reactive protein predicts postoperative delirium following vascular surgery. Ann. Vasc. Surg. 28, 1923–1930. 10.1016/j.avsg.2014.07.004
    1. Praticò C., Quattrone D., Lucanto T., Amato A., Penna O., Roscitano C., et al. . (2005). Drugs of anesthesia acting on central cholinergic system may cause post-operative cognitive dysfunction and delirium. Med. Hypotheses 65, 972–982. 10.1016/j.mehy.2005.05.037
    1. Ramlawi B., Rudolph J. L., Mieno S., Feng J., Boodhwani M., Khabbaz K., et al. . (2006). C-Reactive protein and inflammatory response associated to neurocognitive decline following cardiac surgery. Surgery 140, 221–226. 10.1016/j.surg.2006.03.007
    1. Rasmussen L. S., Christiansen M., Rasmussen H., Kristensen P. A., Moller J. T. (2000). Do blood concentrations of neurone specific enolase and S-100 beta protein reflect cognitive dysfunction after abdominal surgery? ISPOCD group. Br. J. Anaesth. 84, 242–244. 10.1093/oxfordjournals.bja.a013410
    1. Renard P., Zachary M. D., Bougelet C., Mirault M. E., Haegeman G., Remacle J., et al. . (1997). Effects of antioxidant enzyme modulations on interleukin-1-induced nuclear factor kappa B activation. Biochem. Pharmacol. 53, 149–160. 10.1016/s0006-2952(96)00645-4
    1. Rentowl P., Hanning C. D. (2004). Odour identification as a marker for postoperative cognitive dysfunction: a pilot study. Anaesthesia 59, 337–343. 10.1111/j.1365-2044.2004.03678.x
    1. Rezvani A. H., Levin E. D. (2001). Cognitive effects of nicotine. Biol. Psychiatry 49, 258–267. 10.1016/S0006-3223(00)01094-5
    1. Ritchie C. W., Newman T. H., Leurent B., Sampson E. L. (2014). The association between C-reactive protein and delirium in 710 acute elderly hospital admissions. Int. Psychogeriatr. 26, 717–724. 10.1017/s1041610213002433
    1. Robinson T. N., Raeburn C. D., Angles E. M., Moss M. (2008). Low tryptophan levels are associated with postoperative delirium in the elderly. Am. J. Surg. 196, 670–674. 10.1016/j.amjsurg.2008.07.007
    1. Robinson T. N., Raeburn C. D., Tran Z. V., Angles E. M., Brenner L. A., Moss M. (2009). Postoperative delirium in the elderly: risk factors and outcomes. Ann. Surg. 249, 173–178. 10.1097/SLA.0B013e31818e4776
    1. Root J. C., Pryor K. O., Downey R., Alici Y., Davis M. L., Holodny A., et al. . (2013). Association of pre-operative brain pathology with post-operative delirium in a cohort of non-small cell lung cancer patients undergoing surgical resection. Psychooncology 22, 2087–2094. 10.1002/pon.3262
    1. Rothenburger M., Soeparwata R., Deng M. C., Berendes E., Schmid C., Tjan T. D. T., et al. . (2001). The impact of anti-endotoxin core antibodies on endotoxin and cytokine release and ventilation time after cardiac surgery. J. Am. Coll. Cardiol. 38, 124–130. 10.1016/s0735-1097(01)01323-7
    1. Rudolph J. L., Marcantonio E. R., Culley D. J., Silverstein J. H., Rasmussen L. S., Crosby G. J., et al. . (2008a). Delirium is associated with early postoperative cognitive dysfunction. Anaesthesia 63, 941–947. 10.1111/j.1365-2044.2008.05523.x
    1. Rudolph J. L., Ramlawi B., Kuchel G. A., McElhaney J. E., Xie D., Sellke F. W., et al. . (2008b). Chemokines are associated with delirium after cardiac surgery. J. Gerontol. A Biol. Sci. Med. Sci. 63, 184–189. 10.1093/gerona/63.2.184
    1. Sag D., Carling D., Stout R. D., Suttles J. (2008). Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181, 8633–8641. 10.4049/jimmunol.181.12.8633
    1. Salani F., Ciaramella A., Bizzoni F., Assogna F., Caltagirone C., Spalletta G., et al. . (2013). Increased expression of Interleukin-18 receptor in blood cells of subjects with mild cognitive impairment and Alzheimer’s disease. Cytokine 61, 360–363. 10.1016/j.cyto.2012.11.001
    1. Salminen A., Hyttinen J. M. T., Kaarniranta K. (2011). AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J. Mol. Med. (Berl.) 89, 667–676. 10.1007/s00109-011-0748-0
    1. Scherzer C. R., Eklund A. C., Morse L. J., Liao Z., Locascio J. J., Fefer D., et al. . (2007). Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc. Natl. Acad. Sci. U S A 104, 955–960. 10.1073/pnas.0610204104
    1. Shalev H., Serlin Y., Friedman A. (2009). Breaching the blood-brain barrier as a gate to psychiatric disorder. Cardiovasc. Psychiatry Neurol. 2009:278531. 10.1155/2009/278531
    1. Shcheglovitov A., Shcheglovitova O., Yazawa M., Portmann T., Shu R., Sebastiano V., et al. . (2013). SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature 503, 267–271. 10.1038/nature12618
    1. Shigeta H., Yasui A., Nimura Y., Machida N., Kageyama M., Miura M., et al. . (2001). Postoperative delirium and melatonin levels in elderly patients. Am. J. Surg. 182, 449–454. 10.1016/s0002-9610(01)00761-9
    1. Siddiqui S., Fang M., Ni B., Lu D., Martin B., Maudsley S. (2012). Central role of the EGF receptor in neurometabolic aging. Int. J. Endocrinol. 2012:739428. 10.1155/2012/739428
    1. Soininen H., Lehtovirta M., Helisalmi S., Linnaranta K., Heinonen O., Riekkinen P. (1995). Increased acetylcholinesterase activity in the CSF of Alzheimer patients carrying apolipoprotein epsilon4 allele. Neuroreport 6, 2518–2520. 10.1097/00001756-199512150-00017
    1. Sørensen K. D., Ørntoft T. F. (2010). Discovery of prostate cancer biomarkers by microarray gene expression profiling. Expert Rev. Mol. Diagn. 10, 49–64. 10.1586/erm.09.74
    1. Stefano G. B., Bilfinger T. V., Fricchione G. L. (1994). The immune-neuro-link and the macrophage: postcardiotomy delirium, HIV-associated dementia and psychiatry. Prog. Neurobiol. 42, 475–488. 10.1016/0301-0082(94)90048-5
    1. Steinmetz J., Christensen K. B., Lund T., Lohse N., Rasmussen L. S., ISPOCD Group (2009). Long-term consequences of postoperative cognitive dysfunction. Anesthesiology 110, 548–555. 10.1097/ALN.0b013e318195b569
    1. Stoicea N., McVicker S., Quinones A., Agbenyefia P., Bergese S. D. (2014). Delirium-biomarkers and genetic variance. Front. Pharmacol. 5:75. 10.3389/fphar.2014.00075
    1. Sunwoo M. K., Hong J. Y., Choi J., Park H. J., Kim S. H., Lee P. H. (2013). β-Synuclein pathology is related to postoperative delirium in patients undergoing gastrectomy. Neurology 80, 810–813. 10.1212/wnl.0b013e3182840782
    1. Sutinen E. M., Pirttilä T., Anderson G., Salminen A., Ojala J. O. (2012). Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J. Neuroinflammation 9:199. 10.1186/1742-2094-9-199
    1. Takeoka T., Shinohara Y., Furumi K., Mori K. (1983). Impairment of blood-cerebrospinal fluid barrier in multiple sclerosis. J. Neurochem. 41, 1102–1108. 10.1111/j.1471-4159.1983.tb09058.x
    1. Tanzi R. E., Gusella J. F., Watkins P. C., Bruns G. A., St George-Hyslop P., Van Keuren M. L., et al. . (1987). Amyloid beta protein gene: cDNA, mRNA distribution and genetic linkage near the Alzheimer locus. Science 235, 880–884. 10.1126/science.2949367
    1. Teixeira A. L., Barbosa I. G., Diniz B. S., Kummer A. (2010). Circulating levels of brain-derived neurotrophic factor: correlation with mood, cognition and motor function. Biomark. Med. 4, 871–887. 10.2217/bmm.10.111
    1. Terrando N., Eriksson L. I., Kyu Ryu J., Yang T., Monaco C., Feldmann M., et al. . (2011). Resolving postoperative neuroinflammation and cognitive decline. Ann. Neurol. 70, 986–995. 10.1002/ana.22664
    1. Terrando N., Monaco C., Ma D., Foxwell B. M. J., Feldmann M., Maze M. (2010). Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc. Natl. Acad. Sci. U S A 107, 20518–20522. 10.1073/pnas.1014557107
    1. Thomassen E., Renshaw B. R., Sims J. E. (1999). Identification and characterization of SIGIRR, a molecule representing a novel subtype of the IL-1R superfamily. Cytokine 11, 389–399. 10.1006/cyto.1998.0452
    1. Tian A., Ma H., Cao X., Zhang R., Wang X., Wu B. (2015). Vitamin D improves cognitive function and modulates Th17/T reg cell balance after hepatectomy in mice. Inflammation 38, 500–509. 10.1007/s10753-014-9956-4
    1. Tilvis R. S., Kähönen-Väre M. H., Jolkkonen J., Valvanne J., Pitkala K. H., Strandberg T. E. (2004). Predictors of cognitive decline and mortality of aged people over a 10-year period. J. Gerontol. A Biol. Sci. Med. Sci. 59, 268–274. 10.1093/gerona/59.3.m268
    1. Trzepacz P. T. (2000). Is there a final common neural pathway in delirium? Focus on acetylcholine and dopamine. Semin. Clin. Neuropsychiatry 5, 132–148. 10.153/SCNP00500132
    1. Tsai T. L., Sands L. P., Leung J. M. (2010). An update on postoperative cognitive dysfunction. Adv. Anesth. 28, 269–284. 10.1016/j.aan.2010.09.003
    1. Tune L. E., Damlouji N. F., Holland A., Gardner T. J., Folstein M. F., Coyle J. T. (1981). Association of postoperative delirium with raised serum levels of anticholinergic drugs. Lancet 2, 651–653. 10.1016/S0140-6736(81)90994-6
    1. van den Boogaard M., Kox M., Quinn K. L., van Achterberg T., van der Hoeven J. G., Schoonhoven L., et al. . (2011). Biomarkers associated with delirium in critically ill patients and their relation with long-term subjective cognitive dysfunction; indications for different pathways governing delirium in inflamed and noninflamed patients. Crit. Care 15:R297. 10.1186/cc10598
    1. van der Mast R. C., van den Broek W. W., Fekkes D., Pepplinkhuizen L., Habbema J. D. (2000). Is delirium after cardiac surgery related to plasma amino acids and physical condition? J. Neuropsychiatry Clin. Neurosci. 12, 57–63. 10.1176/jnp.12.1.57
    1. van Gool W. A., van de Beek D., Eikelenboom P. (2010). Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet 375, 773–775. 10.1016/s0140-6736(09)61158-2
    1. van Munster B. C., Aronica E., Zwinderman A. H., Eikelenboom P., Cunningham C., de Rooij S. E. J. (2011a). Neuroinflammation in delirium: a postmortem case-control study. Rejuvenation Res. 14, 615–622. 10.1089/rej.2011.1185
    1. van Munster B. C., Bisschop P. H., Zwinderman A. H., Korevaar J. C., Endert E., Wiersinga W. J., et al. . (2010a). Cortisol, interleukins and S100B in delirium in the elderly. Brain Cogn. 74, 18–23. 10.1016/j.bandc.2010.05.010
    1. van Munster B. C., de Rooij S. E. J. A., Yazdanpanah M., Tienari P. J., Pitkälä K. H., Osse R. J., et al. . (2010b). The association of the dopamine transporter gene and the dopamine receptor 2 gene with delirium, a meta-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 648–655. 10.1002/ajmg.b.31034
    1. van Munster B. C., Korevaar J. C., Korse C. M., Bonfrer J. M., Zwinderman A. H., de Rooij S. E. (2010c). Serum S100B in elderly patients with and without delirium. Int. J. Geriatr. Psychiatry 25, 234–239. 10.1002/gps.2326
    1. van Munster B. C., Korevaar J. C., Zwinderman A. H., Leeflang M. M., de Rooij S. E. J. A. (2009a). The association between delirium and the apolipoprotein E epsilon 4 allele: new study results and a meta-analysis. Am. J. Geriatr. Psychiatry 17, 856–862. 10.1097/jgp.0b013e3181ab8c84
    1. van Munster B. C., Korevaar J. C., Zwinderman A. H., Levi M., Wiersinga W. J., De Rooij S. E. (2008). Time-course of cytokines during delirium in elderly patients with hip fractures. J. Am. Geriatr. Soc. 56, 1704–1709. 10.1111/j.1532-5415.2008.01851.x
    1. van Munster B. C., Korse C. M., de Rooij S. E., Bonfrer J. M., Zwinderman A. H., Korevaar J. C. (2009b). Markers of cerebral damage during delirium in elderly patients with hip fracture. BMC Neurol. 9:21. 10.1186/1471-2377-9-21
    1. van Munster B. C., Thomas C., Kreisel S. H., Brouwer J. P., Nanninga S., Kopitz J., et al. . (2012). Longitudinal assessment of serum anticholinergic activity in delirium of the elderly. J. Psychiatr. Res. 46, 1339–1345. 10.1016/j.jpsychires.2012.06.015
    1. van Munster B. C., Yazdanpanah M., Tanck M. W. T., de Rooij S. E. J. A., Van De Giessen E., Sijbrands E. J. G., et al. . (2010d). Genetic polymorphisms in the DRD2, DRD3 and SLC6A3 gene in elderly patients with delirium. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 153, 38–45. 10.1002/ajmg.b.30943
    1. van Munster B. C., Zwinderman A. H., de Rooij S. E. (2011b). Genetic variations in the interleukin-6 and interleukin-8 genes and the interleukin-6 receptor gene in delirium. Rejuvenation Res. 14, 425–428. 10.1089/rej.2011.1155
    1. Volkow N. D., Gur R. C., Wang G. J., Fowler J. S., Moberg P. J., Ding Y. S., et al. . (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. Am. J. Psychiatry 155, 344–349. 10.1176/ajp.155.3.344
    1. Volpicelli L. A., Levey A. I. (2004). Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog. Brain Res. 145, 59–66. 10.1016/s0079-6123(03)45003-6
    1. Vom Berg J., Prokop S., Miller K. R., Obst J., Kälin R. E., Lopategui-Cabezas I., et al. . (2012). Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat. Med. 18, 1812–1819. 10.1038/nm.2965
    1. Wagner M., Schulze-Rauschenbach S., Petrovsky N., Brinkmeyer J., von der Goltz C., Gründer G., et al. . (2013). Neurocognitive impairments in non-deprived smokers–Results from a population-based multi-center study on smoking-related behavior. Addict. Biol. 18, 752–761. 10.1111/j.1369-1600.2011.00429.x
    1. Wald D., Qin J., Zhao Z., Qian Y., Naramura M., Tian L., et al. . (2003). SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat. Immunol. 4, 920–927. 10.1038/ni968
    1. Wan C., La Y., Zhu H., Yang Y., Jiang L., Chen Y., et al. . (2007). Abnormal changes of plasma acute phase proteins in schizophrenia and the relation between schizophrenia and haptoglobin (Hp) gene. Amino Acids 32, 101–108. 10.1007/s00726-005-0292-8
    1. Wan Y., Xu J., Meng F., Bao Y., Ge Y., Lobo N., et al. . (2010). Cognitive decline following major surgery is associated with gliosis, β-amyloid accumulation and τ phosphorylation in old mice. Crit. Care Med. 38, 2190–2198. 10.1097/CCM.0b013e3181f17bcb
    1. Wang Y., He H., Li D., Zhu W., Duan K., Le Y., et al. . (2013). The role of the TLR4 signaling pathway in cognitive deficits following surgery in aged rats. Mol. Med. Rep. 7, 1137–1142. 10.3892/mmr.2013.1322
    1. Wang X., Yu J., Sreekumar A., Varambally S., Shen R., Giacherio D., et al. . (2005). Autoantibody signatures in prostate cancer. N. Engl. J. Med. 353, 1224–1235. 10.1056/NEJMoa051931
    1. Wenk G. L. (2003). Neuropathologic changes in Alzheimer’s disease. J. Clin. Psychiatry 64, 7–10.
    1. Wessel J., McDonald S. M., Hinds D. A., Stokowski R. P., Javitz H. S., Kennemer M., et al. . (2010). Resequencing of nicotinic acetylcholine receptor genes and association of common and rare variants with the Fagerström test for nicotine dependence. Neuropsychopharmacology 35, 2392–2402. 10.1038/npp.2010.120
    1. Willard B., Hauss-Wegrzyniak B., Wenk G. L. (1999). Pathological and biochemical consequences of acute and chronic neuroinflammation within the basal forebrain cholinergic system of rats. Neuroscience 88, 193–200. 10.1016/s0306-4522(98)00216-4
    1. Wilson K., Broadhurst C., Diver M., Jackson M., Mottram P. (2005). Plasma insulin growth factor-1 and incident delirium in older people. Int. J. Geriatr. Psychiatry 20, 154–159. 10.1002/gps.1265
    1. Winterer G. (2010). Why do patients with schizophrenia smoke? Curr. Opin. Psychiatry 23, 112–119. 10.1097/yco.0b013e3283366643
    1. Winterer G., Mittelstrass K., Giegling I., Lamina C., Fehr C., Brenner H., et al. . (2010). Risk gene variants for nicotine dependence in the CHRNA5-CHRNA3-CHRNB4 cluster are associated with cognitive performance. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153, 1448–1458. 10.1002/ajmg.b.31126
    1. Winterer G., Musso F., Konrad A., Vucurevic G., Stoeter P., Sander T., et al. . (2007). Association of attentional network function with exon 5 variations of the CHRNA4 gene. Hum. Mol. Genet. 16, 2165–2174. 10.1093/hmg/ddm168
    1. Wu Y., Wang J., Wu A., Yue Y. (2014). Do fluctuations in endogenous melatonin levels predict the occurrence of postoperative cognitive dysfunction (POCD)? Int. J. Neurosci. 124, 787–791. 10.3109/00207454.2014.882919
    1. Xie P., Kranzler H. R., Krauthammer M., Cosgrove K. P., Oslin D., Anton R. F., et al. . (2011). Rare nonsynonymous variants in alpha-4 nicotinic acetylcholine receptor gene protect against nicotine dependence. Biol. Psychiatry 70, 528–536. 10.1016/j.biopsych.2011.04.017
    1. Yaffe K., Kanaya A., Lindquist K., Simonsick E. M., Harris T., Shorr R. I., et al. . (2004). The metabolic syndrome, inflammation and risk of cognitive decline. JAMA 292, 2237–2242. 10.1001/jama.292.18.2237
    1. Yang Y.-R., Liu S.-L., Qin Z.-Y., Liu F.-J., Qin Y.-J., Bai S.-M., et al. . (2008). Comparative proteomics analysis of cerebrospinal fluid of patients with Guillain-Barré syndrome. Cell. Mol. Neurobiol. 28, 737–744. 10.1007/s10571-007-9257-7
    1. Yoshitaka S., Egi M., Morimatsu H., Kanazawa T., Toda Y., Morita K. (2013). Perioperative plasma melatonin concentration in postoperative critically ill patients: its association with delirium. J. Crit. Care 28, 236–242. 10.1016/j.jcrc.2012.11.004
    1. Zhang Y.-H., Guo X.-H., Zhang Q.-M., Yan G.-T., Wang T.-L. (2014a). Serum CRP and urinary trypsin inhibitor implicate postoperative cognitive dysfunction especially in elderly patients. Int. J. Neurosci. [Epub ahead of print]. 10.3109/00207454.2014.949341
    1. Zhang Z., Pan L., Deng H., Ni H., Xu X. (2014b). Prediction of delirium in critically ill patients with elevated C-reactive protein. J. Crit. Care 29, 88–92. 10.1016/j.jcrc.2013.09.002

Source: PubMed

3
Prenumerera