Low-dose dexmedetomidine as a perineural adjuvant for postoperative analgesia: a randomized controlled trial

Wei Liu, Jingwen Guo, Jun Zheng, Bin Zheng, Xiangcai Ruan, Addition of Dexmedetomidine to Ropivacaine-Induced supraclavicular Block (ADRIB) investigator, Wei Liu, Jingwen Guo, Jun Zheng, Bin Zheng, Xiangcai Ruan, Addition of Dexmedetomidine to Ropivacaine-Induced supraclavicular Block (ADRIB) investigator

Abstract

Purpose: Dexmedetomidine has been proposed as an additive to local anesthetics to prolong peripheral nerve block duration; however, perineural dexmedetomidine has been associated with an increased risk of bradycardia and hypotension This randomized controlled study investigated the effects of low-dose dexmedetomidine as a perineural adjuvant for postoperative analgesia.

Methods: Fifty-five patients who had undergone elective upper extremity surgery were randomized to receive an ultrasound-guided supraclavicular brachial plexus block with 20 mL 0.5% ropivacaine with or without 30 μg dexmedetomidine. The primary outcome was the duration of analgesia. Secondary outcomes included the onset time and duration of the motor and sensory blocks, incidence of hypotension and bradycardia, total postoperative analgesics, and safety assessment during the 24 h after surgery.

Results: Dexmedetomidine significantly prolonged the duration of analgesia (887 ± 92 min vs 661 ± 83 min, P < 0.0001). The onset time and the duration of motor and sensory block were significantly different between the groups (all P < 0.001). No episodes of hypotension or bradycardia were detected in the dexmedetomidine group. The total postoperative analgesic use and side effect profiles in the first 24 h postoperative period were similar for both groups.

Conclusions: Low-dose dexmedetomidine (30 μg) as a perineural adjuvant significantly prolonged the analgesic duration of a brachial plexus block without inducing hemodynamic instability.

Trial registration: This trial was registered at ClinicalTrial.gov (NCT02630290).

Keywords: Dexmedetomidine; Nerve block; Postoperative pain.

Conflict of interest statement

None declared.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
CONSORT flow diagram showing number of patients at each phase of the study
Fig. 2
Fig. 2
Kaplan–Meier survival curves of time to first use of rescue medication in patients receiving control ( ) or dexmedetomidine ( )
Fig. 3
Fig. 3
Postoperative pain scores in patients receiving control ( ) or dexmedetomidine ( ). Boxes indicate median with 25th and 75th percentiles (interquartile range) and whisker caps indicate minimum to maximum values. *P < 0.05, **P < 0.01. VAS, visual analog scale

References

    1. Hussain N, Goldar G, Ragina N, Banfield L, Laffey JG, Abdallah FW. Suprascapular and interscalene nerve block for shoulder surgery: a systematic review and meta-analysis. Anesthesiology. 2017;127(6):998–1013. doi: 10.1097/ALN.0000000000001894.
    1. Sehmbi H, Brull R, Ceballos KR, Shah UJ, Martin J, Tobias A, Solo K, Abdallah FW. Perineural and intravenous dexamethasone and dexmedetomidine: network meta-analysis of adjunctive effects on supraclavicular brachial plexus block. Anaesthesia. 2021;76(7):974–90.
    1. Hussain N, Grzywacz VP, Ferreri CA, Atrey A, Banfield L, Shaparin N, Vydyanathan A. Investigating the efficacy of dexmedetomidine as an adjuvant to local anesthesia in brachial plexus block: a systematic review and meta-analysis of 18 randomized controlled trials. Reg Anesth Pain Med. 2017;42(2):184–196. doi: 10.1097/AAP.0000000000000564.
    1. Brummett CM, Padda AK, Amodeo FS, Welch KB, Lydic R. Perineural dexmedetomidine added to ropivacaine causes a dose-dependent increase in the duration of thermal antinociception in sciatic nerve block in rat. Anesthesiology. 2009;111(5):1111–1119. doi: 10.1097/ALN.0b013e3181bbcc26.
    1. Brummett CM, Norat MA, Palmisano JM, Lydic R. Perineural administration of dexmedetomidine in combination with bupivacaine enhances sensory and motor blockade in sciatic nerve block without inducing neurotoxicity in rat. Anesthesiology. 2008;109(3):502–511. doi: 10.1097/ALN.0b013e318182c26b.
    1. Bharti N, Sardana DK, Bala I. The analgesic efficacy of dexmedetomidine as an adjunct to local anesthetics in supraclavicular brachial plexus block: a randomized controlled trial. Anesth Analg. 2015;121(6):1655–1660. doi: 10.1213/ANE.0000000000001006.
    1. Vorobeichik L, Brull R, Abdallah FW. Evidence basis for using perineural dexmedetomidine to enhance the quality of brachial plexus nerve blocks: a systematic review and meta-analysis of randomized controlled trials. Br J Anaesth. 2017;118(2):167–181. doi: 10.1093/bja/aew411.
    1. Esmaoglu A, Yegenoglu F, Akin A, Turk CY. Dexmedetomidine added to levobupivacaine prolongs axillary brachial plexus block. Anesth Analg. 2010;111(6):1548–51.
    1. Fritsch G, Danninger T, Allerberger K, Tsodikov A, Felder TK, Kapeller M, Gerner P, Brummett CM. Dexmedetomidine added to ropivacaine extends the duration of interscalene brachial plexus blocks for elective shoulder surgery when compared with ropivacaine alone: a single-center, prospective, triple-blind, randomized controlled trial. Reg Anesth Pain Med. 2014;39(1):37–47. doi: 10.1097/AAP.0000000000000033.
    1. Marhofer D, Kettner SC, Marhofer P, Pils S, Weber M, Zeitlinger M. Dexmedetomidine as an adjuvant to ropivacaine prolongs peripheral nerve block: a volunteer study. Br J Anaesth. 2013;110(3):438–442. doi: 10.1093/bja/aes400.
    1. Keplinger M, Marhofer P, Kettner SC, Marhofer D, Kimberger O, Zeitlinger M. A pharmacodynamic evaluation of dexmedetomidine as an additive drug to ropivacaine for peripheral nerve blockade: a randomised, triple-blind, controlled study in volunteers. Eur J Anaesthesiol. 2015;32(11):790–796. doi: 10.1097/EJA.0000000000000246.
    1. Andersen JH, Grevstad U, Siegel H, Dahl JB, Mathiesen O, Jaeger P. Does dexmedetomidine have a perineural mechanism of action when used as an adjuvant to ropivacaine?: a paired, blinded. Randomized Trial in Healthy Volunteers Anesthesiology. 2017;126(1):66–73.
    1. Cai H, Fan X, Feng P, Wang X, Xie Y. Optimal dose of perineural dexmedetomidine to prolong analgesia after brachial plexus blockade: a systematic review and Meta-analysis of 57 randomized clinical trials. BMC Anesthesiol. 2021;21(1):233. doi: 10.1186/s12871-021-01452-0.
    1. Hussain N, Brummett CM, Brull R, Alghothani Y, Moran K, Sawyer T, Abdallah FW. Efficacy of perineural versus intravenous dexmedetomidine as a peripheral nerve block adjunct: a systematic review. Reg Anesth Pain Med. 2021;46(8):704–12.
    1. Schnabel A, Reichl SU, Weibel S, Kranke P, Zahn PK, Pogatzki-Zahn EM, Meyer-Friessem CH. Efficacy and safety of dexmedetomidine in peripheral nerve blocks: A meta-analysis and trial sequential analysis. Eur J Anaesthesiol. 2018;35(10):745–758. doi: 10.1097/EJA.0000000000000870.
    1. Bengisun ZK, Ekmekci P, Akan B, Koroglu A, Tuzuner F. The effect of adding dexmedetomidine to levobupivacaine for interscalene block for postoperative pain management after arthroscopic shoulder surgery. Clin J Pain. 2014;30(12):1057–1061. doi: 10.1097/AJP.0000000000000065.
    1. Gandhi B, Shah A, Patel I. Use of dexemedetomidine along with bupivacaine for brachial plexus block. Natl J Med Res. 2012;2(1):67–69.
    1. Bao X, Huang J, Feng H, Qian Y, Wang Y, Zhang Q, Hu H, Wang X. Effect of local anesthetic volume (20 mL vs 30 mL ropivacaine) on electromyography of the diaphragm and pulmonary function after ultrasound-guided supraclavicular brachial plexus block: a randomized controlled trial. Reg Anesth Pain Med. 2019;44(1):69–75. doi: 10.1136/rapm-2018-000014.
    1. Kettner SC. Dexmedetomidine as adjuvant for peripheral nerve blocks. Br J Anaesth. 2013;111(1):123. doi: 10.1093/bja/aet179.
    1. Abdulatif M, Fawzy M, Nassar H, Hasanin A, Ollaek M, Mohamed H. The effects of perineural dexmedetomidine on the pharmacodynamic profile of femoral nerve block: a dose-finding randomised, controlled, double-blind study. Anaesthesia. 2016;71(10):1177–1185. doi: 10.1111/anae.13603.
    1. Memari E, Hosseinian MA, Mirkheshti A, Arhami-Dolatabadi A, Mirabotalebi M, Khandaghy M, Daneshbod Y, Alizadeh L, Shirian S. Comparison of histopathological effects of perineural administration of bupivacaine and bupivacaine-dexmedetomidine in rat sciatic nerve. Exp Toxicol Pathol. 2016;68(10):559–564. doi: 10.1016/j.etp.2016.09.001.
    1. Tufek A, Kaya S, Tokgoz O, Firat U, Evliyaoglu O, Celik F, Karaman H. The protective effect of dexmedetomidine on bupivacaine-induced sciatic nerve inflammation is mediated by mast cells. Clin Invest Med. 2013;36(2):E95–102. doi: 10.25011/cim.v36i2.19572.
    1. Brummett CM, Hong EK, Janda AM, Amodeo FS, Lydic R. Perineural dexmedetomidine added to ropivacaine for sciatic nerve block in rats prolongs the duration of analgesia by blocking the hyperpolarization-activated cation current. Anesthesiology. 2011;115(4):836–843. doi: 10.1097/ALN.0b013e318221fcc9.
    1. Abdallah FW, Dwyer T, Chan VW, Niazi AU, Ogilvie-Harris DJ, Oldfield S, Patel R, Oh J, Brull R. IV and perineural dexmedetomidine similarly prolong the duration of analgesia after interscalene brachial plexus block: a randomized, three-arm, triple-masked. Placebo-controlled Trial Anesthesiol. 2016;124(3):683–695.

Source: PubMed

3
Prenumerera