Tumoral immune-infiltrate (IF), PD-L1 expression and role of CD8/TIA-1 lymphocytes in localized osteosarcoma patients treated within protocol ISG-OS1

Emanuela Palmerini, Claudio Agostinelli, Piero Picci, Stefano Pileri, Teresa Marafioti, Pier-Luigi Lollini, Katia Scotlandi, Alessandra Longhi, Maria Serena Benassi, Stefano Ferrari, Emanuela Palmerini, Claudio Agostinelli, Piero Picci, Stefano Pileri, Teresa Marafioti, Pier-Luigi Lollini, Katia Scotlandi, Alessandra Longhi, Maria Serena Benassi, Stefano Ferrari

Abstract

Background: We hypothesized that immune-infiltrates were associated with superior survival, and examined a primary osteosarcoma tissue microarrays (TMAs) to test this hypothesis.

Methods: 129 patients (pts) with localized osteosarcoma treated within protocol ISG-OS1 were included in the study. Clinical characteristics, expression of CD8, CD3, FOXP3, CD20, CD68/CD163 (tumor associated macrophage, TAM), Tia-1 (cytotoxic T cell), CD303 (plasmacytoid dendritic cells: pDC), Arginase-1 (myeloid derived suppressor cells: MDSC), PD-1 on immune-cells (IC), and PD-L1 on tumoral cells (TC) and IC were analysed and correlated with outcome.

Results: Most of the cases presented tumor infiltrating lymphocytes (TILs) (CD3+ 90%; CD8+ 86%). Tia-1 was detected in 73% of the samples. PD-L1 expression was found in 14% patients in IC and 0% in TC; 22% showed PD-1 expression in IC.With a median follow-up of 8 years (range 1-13), the 5-year overall survival (5-year OS) was 74% (95% CI 64-85). Univariate analysis showed better 5-year OS for: a) pts with a good histologic response to neoadjuvant chemotherapy (p = 0.0001); b) pts with CD8/Tia1 tumoral infiltrates (p = 0.002); c) pts with normal alkaline phosphatas (sALP) (p = 0.04). After multivariate analysis, histologic response (p = 0.007) and CD8/Tia1 infiltration (p = 0.01) were independently correlated with survival. In the subset of pts with CD8+ infiltrate, worse (p 0.02) OS was observed for PD-L1(IC)+ cases.

Conclusions: Our findings support the hypothesis that CD8/Tia1 infiltrate in tumor microenvironment at diagnosis confers superior survival for pts with localized osteosarcoma, while PD-L1 expression is associated with worse survival.

Keywords: CD8; PD-1; PD-L1; osteosarcoma; tumor microenvironment.

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare that they have no conflicts of interest.

Figures

Figure 1. Mechanisms for intratumoral programmed cell…
Figure 1. Mechanisms for intratumoral programmed cell death ligand-1 (PD-L1) expression
Adaptive focal expression of PD-L1 by macrophages (CD68+/CD163+) occurs at the interface of tumor cell nests with immune infiltrates secreting pro-inflammatory factors such as interferon-γ. The ligation of PD-L1 on macrophage and, in some histotypes, on tumor cells, with programmed cell death protein 1 (PD-1) molecules will down-modulate T cell function, essentially creating a negative feedback loop that reduces antitumor immunity (the so called ‘tumor shield’ effect), eventually reducing CD8 tumoricidal function.
Figure 2. Tumor microenvironment in localized osteosarcoma
Figure 2. Tumor microenvironment in localized osteosarcoma
Immunohistochemical expression of CD3, CD8, CD20 (T tumor infiltrating lymphocytes: TILs), Tia-1 (cytotoxic T cell), FOXP3 (T regulatory lymphocytes: T-regs), PD-1, PD-L1, CD68 (tumor associated macrophages: TAM), BDCA-2/CD303 (plasmacytoid dendritic cells: pDC), Arginase-1 (myeloid derived suppressor cells: MDSC) proteins.
Figure 3. Survival and immune-infiltrate
Figure 3. Survival and immune-infiltrate
(A) 5-year overall survival according to CD8/Tia1 expression in localized osteosarcoma; (B) 5-year overall survival according to PD-L1 expression in patients with CD8+ localized osteosarcoma.
Figure 4. Proposal for ‘Immune-infiltrate based treatment…
Figure 4. Proposal for ‘Immune-infiltrate based treatment algorithm’ for localized osteosarcoma

References

    1. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer. 2009;115:1531–1543.
    1. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–174.
    1. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16:275–287.
    1. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL, Anders RA. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti–PD-1 therapy. Clin Cancer Res. 2014;20:5064–5074.
    1. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–2454.
    1. McDermott DF, Sosman JA, Sznol M, Massard C, Gordon MS, Hamid O, Powderly JD, Infante JR, Fassò M, Wang YV, Zou W, Hegde PS, Fine GD, et al. Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase ia study. J Clin Oncol. 2016;34:833–842.
    1. Paoluzzi L, Cacavio A, Ghesani M, Karambelkar A, Rapkiewicz A, Weber J, Rosen G. Response to anti-PD1 therapy with nivolumab in metastatic sarcomas. Clin Sarcoma Res. 2016;6:24.
    1. Tawbi H, Burgess MA, Crowley J, Van Tine BA, Hu J, Schuetze S. Safety and efficacy of PD-1 blockade using pembrolizumab in patients with advanced soft tissue (STS) and bone sarcomas (BS): results of SARC028-A multicenter phase II study. J Clin Oncol. 2016
    1. McCaughan GJ, Fulham MJ, Mahar A, Soper J, Hong AM, Stalley PD, Tattersall MH, Bhadri VA. Programmed cell death-1 blockade in recurrent disseminated Ewing sarcoma. J Hematol Oncol. 2016;9:48.
    1. Shen JK, Cote GM, Choy E, Yang P, Harmon D, Schwab J, Nielsen GP, Chebib I, Ferrone S, Wang X, Wang Y, Mankin H, Hornicek FJ, et al. Programmed cell death ligand 1 expression in osteosarcoma. Cancer Immunol Res. 2014;2:690–698.
    1. Koirala P, Roth ME, Gill J, Piperdi S, Chinai JM, Geller DS, Hoang BH, Park A, Fremed MA, Zang X, Gorlick R. Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma. Sci Rep. 2016;6:30093.
    1. Sundara YT, Kostine M, Cleven AH, Bovée JV, Schilham MW, Cleton-Jansen AM. Increased PD-L1 and T-cell infiltration in the presence of HLA class I expression in metastatic high-grade osteosarcoma: a rationale for T-cell-based immunotherapy. Cancer Immunol Immunother. 2017;66:119–128.
    1. Dumars C, Ngyuen JM, Gaultier A, Lanel R, Corradini N, Gouin F, Heymann D, Heymann MF. Dysregulation of macrophage polarization is associated with the metastatic process in osteosarcoma. Oncotarget. 2016;7:78343–78354. .
    1. Buddingh EP, Kuijjer ML, Duim RA, Bürger H, Agelopoulos K, Myklebost O, Serra M, Mertens F, Hogendoorn PC, Lankester AC, Cleton-Jansen AM. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents. Clin Cancer Res. 2011;17:2110–2119.
    1. Kleinerman ES, Jia SF, Griffin J, Seibel NL, Benjamin RS, Jaffe N. Phase II study of liposomal muramyl tripeptide in osteosarcoma: the cytokine cascade and monocyte activation following administration. J Clin Oncol. 1992;10:1310–1316.
    1. Ferrari S, Ruggieri P, Cefalo G, Tamburini A, Capanna R, Fagioli F, Comandone A, Bertulli R, Bisogno G, Palmerini E, Alberghini M, Parafioriti A, Linari A, et al. Neoadjuvant chemotherapy with methotrexate, cisplatin, and doxorubicin with or without ifosfamide in nonmetastatic osteosarcoma of the extremity: an Italian sarcoma group trial ISG/OS-1. J Clin Oncol. 2012;30:2112–2118.
    1. Picci P, Bacci G, Campanacci M, Gasparini M, Pilotti S, Cerasoli S, Bertoni F, Guerra A, Capanna R, Albisinni U, Galletti S, Gherlinzoni F, Calderoni P, et al. Histologic evaluation of necrosis in osteosarcoma induced by chemotherapy. Cancer. 1985;56:1515–1521.
    1. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348:203–213.
    1. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoué F, Bruneval P, Cugnenc PH, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–1964.
    1. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F, Perez EA, Thompson EA, Symmans WF, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015;26:259–271.
    1. Toulmonde M, Adam J, Bessede A, Velasco V, Brouste V. Integrative assessment of expression and prognostic value of PDL1, IDO, and kynurenine in 371 primary soft tissue sarcomas with genomic complexity. J Clin Oncol. 2016
    1. Kim JR, Moon YJ, Kwon KS, Bae JS, Wagle S, Kim KM, Park HS, Lee H, Moon WS, Chung MJ, Kang MJ, Jang KY. Tumor infiltrating PD1-positive lymphocytes and the expression of PD-L1 predict poor prognosis of soft tissue sarcomas. PLoS One. 2013;8:e82870.
    1. Afanasiev OK, Yelistratova L, Miller N, Nagase K, Paulson K, Iyer JG, Ibrani D, Koelle DM, Nghiem P. Merkel polyomavirus-specific T cells fluctuate with merkel cell carcinoma burden and express therapeutically targetable PD-1 and Tim-3 exhaustion markers. Clin Cancer Res. 2013;9:5351–5360.
    1. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–567.
    1. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–571.
    1. Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, Blosser RL, Fan H, Wang H, Luber BS, Zhang M, Papadopoulos N, Kinzler KW, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5:43–51.
    1. Lipson EJ, Sharfman WH, Drake CG, Wollner I, Taube JM, Anders RA, Xu H, Yao S, Pons A, Chen L, Pardoll DM, Brahmer JR, Topalian SL. Durable cancer regression off- treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin. Cancer Res. 2013;19:462–468.
    1. Lyford-Pike S, Peng S, Young GD, Taube JM, Westra WH, Akpeng B, Bruno TC, Richmon JD, Wang H, Bishop JA, Chen L, Drake CG, Topalian SL, et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV- associated head and neck squamous cell carcinoma. Cancer Res. 2013;73:1733–1741.
    1. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11:889–896.
    1. ten Hagen TL, van Vianen W, Savelkoul HF, Heremans H, Buurman WA, Bakker-Woudenberg IA. Involvement of T cells in enhanced resistance to Klebsiella pneumoniae septicemia in mice treated with liposome-encapsulated muramyl tripeptide phosphatidylethanolamine or gamma interferon. Infect Immun. 1998;66:1962–1977.
    1. Meyers PA, Schwartz CL, Krailo MD, Healey JH, Bernstein ML, Betcher D, Ferguson WS, Gebhardt MC, Goorin AM, Harris M, Kleinerman E, Link MP, Nadel H, et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival – a report from the Children’s Oncology Group. J Clin Oncol. 2008;26:633–663.

Source: PubMed

3
Prenumerera