Etiological Theories of Adolescent Idiopathic Scoliosis: Past and Present

Maja Fadzan, Josette Bettany-Saltikov, Maja Fadzan, Josette Bettany-Saltikov

Abstract

Adolescent idiopathic scoliosis is one of the most common spinal deformities, yet its cause is unknown. Various theories look to biomechanical, neuromuscular, genetic, and environmental origins, yet our understanding of scoliosis etiology is still limited. Determining the cause of a disease is crucial to developing the most effective treatment. Associations made with scoliosis do not necessarily point to causality, and it is difficult to determine whether said associations are primary (playing a role in development) or secondary (develop as a result of scoliosis). Scoliosis is a complex condition with highly variable expression, even among family members, and likely has many causes. These causes could be similar among homogenous groups of AIS patients, or they could be individual. Here, we review the most prevalent theories of scoliosis etiology and recent trends in research.

Keywords: Adolescent idiopathic scoliosis; Etiology; Neuromuscular; Pathogenesis; Scoliosis; Spinal.

Figures

Fig. (1)
Fig. (1)
Impaired Forward Flexion (adapted from [52]).
Fig. (2)
Fig. (2)
Stoke’s Vicious Cycle of Pathogenesis: A lateral spinal curvature produces asymmetrical loading of the skeletally immature spine, which in turn, causes asymmetrical growth and a progressive wedging deformity. Adapted from, “Scoliosis and the Human Spine” by Martha C. Hawes (2002).

References

    1. Konieczny M.R., Senyurt H., Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J. Child. Orthop. 2013;7(1):3–9. doi: 10.1007/s11832-012-0457-4.
    1. Schultz A.B., Sörensen S.E., Andersson G.B. Measurement of spine morphology in children, ages 10-16. Spine. 1984;9(1):70–73. doi: 10.1097/00007632-198401000-00015.
    1. Longworth B., Fary R., Hopper D. Prevalence and predictors of adolescent idiopathic scoliosis in adolescent ballet dancers. Arch. Phys. Med. Rehabil. 2014;95(9):1725–1730. doi: 10.1016/j.apmr.2014.02.027.
    1. Warren M.P., Brooks-Gunn J., Hamilton L.H., Warren L.F., Hamilton W.G. Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. N. Engl. J. Med. 1986;314(21):1348–1353. doi: 10.1056/NEJM198605223142104.
    1. Meyer C., Cammarata E., Haumont T., Deviterne D., Gauchard G.C., Leheup B., Lascombes P., Perrin P.P. Why do idiopathic scoliosis patients participate more in gymnastics? Scand. J. Med. Sci. Sports. 2006;16(4):231–236. doi: 10.1111/j.1600-0838.2005.00482.x.
    1. Omey M.L., Micheli L.J., Gerbino P.G., II Idiopathic scoliosis and spondylolysis in the female athlete. Tips for treatment. Clin. Orthop. Relat. Res. 2000;(372):74–84. doi: 10.1097/00003086-200003000-00010.
    1. Wood K.B. Spinal deformity in the adolescent athlete. Clin. Sports Med. 2002;21(1):77–92. doi: 10.1016/S0278-5919(03)00058-9.
    1. Baker R.J., Patel D. Lower back pain in the athlete: Common conditions and treatment. Prim. Care. 2005;32(1):201–229. doi: 10.1016/j.pop.2004.11.004.
    1. Liljenqvist U., Witt K.A., Bullmann V., Steinbeck J., Völker K. [Recommendations on sport activities for patients with idiopathic scoliosis]. Sportverletz. Sportschaden. 2006;20(1):36–42. doi: 10.1055/s-2005-859029.
    1. Tanchev P.I., Dzherov A.D., Parushev A.D., Dikov D.M., Todorov M.B. Scoliosis in rhythmic gymnasts. Spine. 2000;25(11):1367–1372. doi: 10.1097/00007632-200006010-00008.
    1. Hellström M., Jacobsson B., Swärd L., Peterson L. Radiologic abnormalities of the thoraco-lumbar spine in athletes. Acta Radiol. 1990;31(2):127–132. doi: 10.1177/028418519003100202.
    1. Modi H., Srinivasalu S., Smehta S., Yang J.H., Song H.R., Suh S.W. Muscle imbalance in volleyball players initiates scoliosis in immature spines: A screening analysis. Asian Spine J. 2008;2(1):38–43. doi: 10.4184/asj.2008.2.1.38.
    1. Meyer C., Haumont T., Gauchard G.C., Leheup B., Lascombes P., Perrin P.P. The practice of physical and sporting activity in teenagers with idiopathic scoliosis is related to the curve type. Scand. J. Med. Sci. Sports. 2008;18(6):751–755. doi: 10.1111/j.1600-0838.2007.00750.x.
    1. Green B.N., Johnson C., Moreau W. Is physical activity contraindicated for individuals with scoliosis? A systematic literature review. J. Chiropr. Med. 2009;8(1):25–37. doi: 10.1016/j.jcm.2008.11.001.
    1. Watanabe K., Michikawa T., Yonezawa I., Takaso M., Minami S., Soshi S., Tsuji T., Okada E., Abe K., Takahashi M., Asakura K., Nishiwaki Y., Matsumoto M. Physical activities and lifestyle factors related to adolescent idiopathic scoliosis. J. Bone Joint Surg. Am. 2017;99(4):284–294. doi: 10.2106/JBJS.16.00459.
    1. Becker T.J. Scoliosis in swimmers. Clin. Sports Med. 1986;5(1):149–158.
    1. Zaina F., Donzelli S., Lusini M., Minnella S., Negrini S. Swimming and spinal deformities: A cross-sectional study. J. Pediatr. 2015;166(1):163–167. doi: 10.1016/j.jpeds.2014.09.024.
    1. Milenkovic S., Zivkovic D., Bubanj S., Bogdanovic Z., Zivkovic M., Stosic D. Frequency of the spinal column postural disorders among elite Serbian swimmers. Facta Universitatis. 2012;10(3):203–209.
    1. Czaprowski D., Kotwicki T., Pawłowska P., Stoliński L. Joint hypermobility in children with idiopathic scoliosis: SOSORT award 2011 winner. Scoliosis. 2011;6:22. doi: 10.1186/1748-7161-6-22.
    1. Binns M. Joint laxity in idiopathic adolescent scoliosis. J. Bone Joint Surg. Br. 1988;70(3):420–422.
    1. Willner S. A study of growth in girls with adolescent idiopathic structural scoliosis. Clin. Orthop. Relat. Res. 1974;(101):129–135.
    1. Nordwall A., Willner S. A study of skeletal age and height in girls with idiopathic scoliosis. Clin. Orthop. Relat. Res. 1975;(110):6–10. doi: 10.1097/00003086-197507000-00002.
    1. Duval Beaupere G. In: Scoliosis and growth. Zorab P.A., editor. Edinburgh, London, UK: Churchill Livingstone; 1971. p. 58.
    1. Dickson R.A., Sevitt E.A. Growth and idiopathic scoliosis: A longitudinal cohort study. Journal of Bone and Joint Surgery. 1982;64B:385–389.
    1. Archer I.A., Dickson R.A. Stature and idiopathic scoliosis. A prospective study. J. Bone Joint Surg. Br. 1985;67(2):185–188.
    1. Hershkovich O., Friedlander A., Gordon B., Arzi H., Derazne E., Tzur D., Shamiss A., Afek A. Association between body mass index, body height, and the prevalence of spinal deformities. Spine J. 2014;14(8):1581–1587. doi: 10.1016/j.spinee.2013.09.034.
    1. Ylikoski M. Growth and progression of adolescent idiopathic scoliosis in girls. J. Pediatr. Orthop. B. 2005;14(5):320–324. doi: 10.1097/01202412-200509000-00002.
    1. Zacharias L., Rand W.M. Adolescent growth in height and its relation to menarche in contemporary American girls. Ann. Hum. Biol. 1983;10(3):209–222. doi: 10.1080/03014468300006381.
    1. Warren M.P., Brooks-Gunn J., Hamilton L.H., Warren L.F., Hamilton W.G. Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. N. Engl. J. Med. 1986;314(21):1348–1353. doi: 10.1056/NEJM198605223142104.
    1. Mao S.H., Jiang J., Sun X., Zhao Q., Qian B.P., Liu Z., Shu H., Qiu Y. Timing of menarche in Chinese girls with and without adolescent idiopathic scoliosis: Current results and review of the literature. Eur. Spine J. 2011;20(2):260–265. doi: 10.1007/s00586-010-1649-6.
    1. Lee W.T., Cheung C.S., Tse Y.K., Chau W.W., Qin L., Cheng J.C. Persistent osteopenia in adolescent idiopathic scoliosis (AIS)–Factors predisposing to generalized osteopenia, a cross-sectional and longitudinal investigation. Int. Congr. Ser. 2007;1297:25–31. doi: 10.1016/j.ics.2006.08.003.
    1. Grivas T.B., Vasiliadis E., Mouzakis V., Mihas C., Koufopoulos G. Association between adolescent idiopathic scoliosis prevalence and age at menarche in different geographic latitudes. Scoliosis. 2006;1:9. doi: 10.1186/1748-7161-1-9.
    1. Karapanou O., Papadimitriou A. Determinants of menarche. Reprod. Biol. Endocrinol. 2010;8:115. doi: 10.1186/1477-7827-8-115.
    1. Kaplowitz P.B. Link between body fat and the timing of puberty. Pediatrics. 2008;121(Suppl. 3):S208–S217. doi: 10.1542/peds.2007-1813F.
    1. Frisch R.E., Revelle R. Height and weight at menarche and a hypothesis of critical body weights and adolescent events. Science. 1970;169(3943):397–399. doi: 10.1126/science.169.3943.397.
    1. Burwell R.G., Aujla R.K., Kirby A.S., Dangerfield P.H., Moulton A., Cole A.A., Polak F.J., Pratt R.K., Webb J.K. Body mass index of girls in health influences menarche and skeletal maturation: A leptin-sympathetic nervous system focus on the trunk with hypothalamic asymmetric dysfunction in the pathogenesis of adolescent idiopathic scoliosis? Stud. Health Technol. Inform. 2008;140:9–21.
    1. Grivas T.B., Burwell R.G., Mihas C., Vasiliadis E.S., Triandaffylopoulos G., Kaspiris A. Relatively lower body mass index is associated with an excess of severe truncal asymmetry in healthy adolescents. Do body fat, leptin, hypothalamus and sympathetic nervous system influence truncal growth asymmetry? Scoliosis. 2009;4(1):13. doi: 10.1186/1748-7161-4-13.
    1. Liu Z., Tam E.M., Sun G.Q., Lam T.P., Zhu Z.Z., Sun X., Lee K.M., Ng T.B., Qiu Y., Cheng J.C., Yeung H.Y. Abnormal leptin bioavailability in adolescent idiopathic scoliosis: An important new finding. Spine. 2012;37(7):599–604. doi: 10.1097/BRS.0b013e318227dd0c.
    1. Tam E.M., Liu Z., Lam T.P., Ting T., Cheung G., Ng B.K., Lee S.K., Qiu Y., Cheng J.C. Lower muscle mass and body fat in adolescent idiopathic scoliosis are associated with abnormal leptin bioavailability. Spine. 2016;41(11):940–946. doi: 10.1097/BRS.0000000000001376.
    1. Grauers A., Rahman I., Gerdhem P. Heritability of scoliosis. Eur. Spine J. 2012;21(6):1069–1074. doi: 10.1007/s00586-011-2074-1.
    1. Tang N.L., Yeung H.Y., Hung V.W., Di Liao C., Lam T.P., Yeung H.M., Lee K.M., Ng B.K., Cheng J.C. Genetic epidemiology and heritability of AIS: A study of 415 Chinese female patients. J. Orthop. Res. 2012;30(9):1464–1469. doi: 10.1002/jor.22090.
    1. Grauers A., Danielsson A., Karlsson M., Ohlin A., Gerdhem P. Family history and its association to curve size and treatment in 1,463 patients with idiopathic scoliosis. Eur. Spine J. 2013;22(11):2421–2426. doi: 10.1007/s00586-013-2860-z.
    1. Stokes I.A. Mechanical effects on skeletal growth. J. Musculoskelet. Neuronal Interact. 2002;2(3):277–280.
    1. Arkin A.M. The mechanism of the structural changes in scoliosis. J. Bone Joint Surg. Am. 1949;31A(3):519–528. doi: 10.2106/00004623-194931030-00007.
    1. Farady J.A. Current principles in the nonoperative management of structural adolescent idiopathic scoliosis. Phys. Ther. 1983;63(4):512–523. doi: 10.1093/ptj/63.4.512.
    1. Riseborough E.J., Herndon J.H. Scoliosis and other deformities of the axial skeleton. Boston: Little, Brown and Company; 1975.
    1. Keim H.A. Scoliosis. Clin. Symp. 1978;30(1):1–30.
    1. Somerville E.W. Rotational lordosis: The development of the single curvature. J Bone Joint Surg. 1952;34B:421–427.
    1. Roaf R. The basic anatomy of scoliosis. J. Bone Joint Surg. Br. 1966;48(4):786–792.
    1. Lawton J.O., Dickson R.A. The experimental basis of idiopathic scoliosis. Clin. Orthop. Relat. Res. 1986;(210):9–17.
    1. Ohlen G., Aaro S., Bylund P. The sagittal configuration and mobility of the spine in idiopathic scoliosis. Spine. 1988;13(4):413–416. doi: 10.1097/00007632-198804000-00008.
    1. Weiss H.R., Lauf R. Amico D’, Merolli A., Santambrogio GC. Three-dimensional Analysis of Spinal Deformities. Studies in Health Technology and Informatics 15. IOS Press; 1995. Impairment of forward flexion – physiological or the precursor of spinal deformity? pp. 307–312.
    1. Tomaschewski R. Weiss HR (Hrgb) Wirbelsaulendeformitaten 2. Stuttgart: Fischer Verlag; 1992. Die Frühbehandlung der beginnenden idiopathischen Skoliose. pp. 51–58.
    1. Millner P.A., Dickson R.A. Idiopathic scoliosis: Biomechanics and biology. Eur. Spine J. 1996;5(6):362–373. doi: 10.1007/BF00301963.
    1. Roaf R. Vertebral growth and its mechanical control. J. Bone Joint Surg. Br. 1960;42-B:40–59.
    1. Deane G., Duthie R.B. A new projectional look at articulated scoliotic spines. Acta Orthop. Scand. 1973;44(4):351–365. doi: 10.3109/17453677308989071.
    1. Porter R.W. Idiopathic scoliosis: the relation between the vertebral canal and the vertebral bodies. Spine. 2000;25(11):1360–1366. doi: 10.1097/00007632-200006010-00007.
    1. Guo X., Chau W.W., Chan Y.L., Cheng J.C. Relative anterior spinal overgrowth in adolescent idiopathic scoliosis. Results of disproportionate endochondral-membranous bone growth. J. Bone Joint Surg. Br. 2003;85(7):1026–1031. doi: 10.1302/0301-620X.85B7.14046.
    1. Guo X., Chau W.W., Chan Y.L., Cheng J.C., Burwell R.G., Dangerfield P.H. Relative anterior spinal overgrowth in adolescent idiopathic scoliosis--result of disproportionate endochondral-membranous bone growth? Summary of an electronic focus group debate of the IBSE. Eur. Spine J. 2005;14(9):862–873. doi: 10.1007/s00586-005-1002-7.
    1. Birchall D., Hughes D., Gregson B., Williamson B. Demonstration of vertebral and disc mechanical torsion in adolescent idiopathic scoliosis using three-dimensional MR imaging. Eur. Spine J. 2005;14(2):123–129. doi: 10.1007/s00586-004-0705-5.
    1. Veldhuizen A.G., Wever D.J., Webb P.J. The aetiology of idiopathic scoliosis: biomechanical and neuromuscular factors. Eur. Spine J. 2000;9(3):178–184. doi: 10.1007/s005860000142.
    1. Raso V.J. Biomechanical factors in the etiology of idiopathic scoliosis, in state of the art reviews. Spine. 2000;14:335.
    1. Burwell R.G. Aetiology of idiopathic scoliosis: Current concepts. Pediatr. Rehabil. 2003;6(3-4):137–170. doi: 10.1080/13638490310001642757.
    1. Castelein R.M., van Dieën J.H., Smit T.H. The role of dorsal shear forces in the pathogenesis of adolescent idiopathic scoliosis--a hypothesis. Med. Hypotheses. 2005;65(3):501–508. doi: 10.1016/j.mehy.2005.03.025.
    1. Sevastik J., Burwell R.G., Dangerfield P.H. A new concept for the etiopathogenesis of the thoracospinal deformity of idiopathic scoliosis: Summary of an electronic focus group debate of the IBSE. Eur. Spine J. 2003;12(4):440–450. doi: 10.1007/s00586-002-0489-4.
    1. Stokes I.A., Burwell R.G., Dangerfield P.H., IBSE Biomechanical spinal growth modulation and progressive adolescent scoliosis--a test of the ‘vicious cycle’ pathogenetic hypothesis: Summary of an electronic focus group debate of the IBSE. Scoliosis. 2006;1:16. doi: 10.1186/1748-7161-1-16.
    1. Brink R.C., Schlosser T.P., Colo D., Vavruch L., van Stralen M., Vincken K.L., Malmqvist M., Kruyt M.C., Tropp H., Castelein R.M. Anterior spinal overgrowth is the result of the scoliotic mechanism and is located in the disc. Spine. 2016 Epub ahead of print.
    1. Stilwell D.L., Jr Structural deformities of vertebrae. Bone adaptation and modeling in experimental scoliosis and kyphosis. J. Bone Joint Surg. Am. 1962;44-A:611–634. doi: 10.2106/00004623-196244040-00002.
    1. Stokes I.A., Spence H., Aronsson D.D., Kilmer N. Mechanical modulation of vertebral body growth. Implications for scoliosis progression. Spine. 1996;21(10):1162–1167. doi: 10.1097/00007632-199605150-00007.
    1. Modi H.N., Suh S.W., Yang J.H., Hong J.Y., Venkatesh K., Muzaffar N. Spontaneous regression of curve in immature idiopathic scoliosis - does spinal column play a role to balance? An observation with literature review. J. Orthop. Surg. 2010;5:80. doi: 10.1186/1749-799X-5-80.
    1. Stokes I.A., Gardner-Morse M. Muscle activation strategies and symmetry of spinal loading in the lumbar spine with scoliosis. Spine. 2004;29(19):2103–2107. doi: 10.1097/01.brs.0000141182.42544.1f.
    1. Weiss H., Lehnert-Schroth C., Moramarco M., et al. Schroth therapy−advancements in conservative scoliosis treatment. Saarbrücken: Lambert Academic Publishing; 2015.
    1. Sevastik J.A., Aaro S., Normelli H. Scoliosis. Experimental and clinical studies. Clin. Orthop. Relat. Res. 1984;(191):27–34.
    1. Sevastik B., Willers U., Hedlund R., Sevastik J., Kristjansson S. Scoliosis induced immediately after mechanical medial rib elongation in the rabbit. Spine. 1993;18(7):923–926. doi: 10.1097/00007632-199306000-00019.
    1. Sevastik J., Agadir M., Sevastik B. Effects of rib elongation on the spine. I. Distortion of the vertebral alignment in the rabbit. Spine. 1990;15(8):822–825. doi: 10.1097/00007632-199008010-00015.
    1. Sevastik J., Agadir M., Sevastik B. Effects of rib elongation on the spine. II. Correction of scoliosis in the rabbit. Spine. 1990;15(8):826–829. doi: 10.1097/00007632-199008010-00016.
    1. Zhu F., Chu W.C., Sun G., Zhu Z.Z., Wang W.J., Cheng J.C., Qiu Y. Rib length asymmetry in thoracic adolescent idiopathic scoliosis: Is it primary or secondary? Eur. Spine J. 2011;20(2):254–259. doi: 10.1007/s00586-010-1637-x.
    1. Gibson P.H., Papaioannou T., Kenwright J. The influence on the spine of leg-length discrepancy after femoral fracture. J. Bone Joint Surg. Br. 1983;65(5):584–587.
    1. Papaioannou T., Stokes I., Kenwright J. Scoliosis associated with limb-length inequality. J. Bone Joint Surg. Am. 1982;64(1):59–62. doi: 10.2106/00004623-198264010-00009.
    1. Raczkowski J.W., Daniszewska B., Zolynski K. Functional scoliosis caused by leg length discrepancy. Arch. Med. Sci. 2010;6(3):393–398. doi: 10.5114/aoms.2010.14262.
    1. Hawes M.C., O’brien J.P. The transformation of spinal curvature into spinal deformity: Pathological processes and implications for treatment. Scoliosis. 2006;1(1):3. doi: 10.1186/1748-7161-1-3.
    1. Hensinger R.N., Cowell H.R., MacEwen G.D. Orthopedic screening of school age children. Review of a ten-year experience. Orthop. Rev. 1985;4:23–28.
    1. Ogilvie J.W. Spinal Biomechanics. In: Lonstein J., Bradford D., Winter R., Ogilvie J., editors. Moe’s textbook of scoliosis and other spinal deformities. Philadelphia, PA: WB Saunders; 1995. pp. 6–22.
    1. Mehta M.H. Growth as a corrective force in the early treatment of progressive infantile scoliosis. J. Bone Joint Surg. Br. 2005;87(9):1237–1247. doi: 10.1302/0301-620X.87B9.16124.
    1. Bettany-Saltikov J., Warren J., Stamp M. Carrying a rucksack on either shoulder or the back, does it matter? Load induced functional scoliosis in “normal” young subjects. Stud. Health Technol. Inform. 2008;140:221–224.
    1. Janssen M.M., Kouwenhoven J.W., Schlösser T.P., Viergever M.A., Bartels L.W., Castelein R.M., Vincken K.L. Analysis of preexistent vertebral rotation in the normal infantile, juvenile, and adolescent spine. Spine. 2011;36(7):E486–E491. doi: 10.1097/BRS.0b013e3181f468cc.
    1. Castelein R.M. Pre-existent rotation of the normal spine at different ages and its consequences for the scoliotic mechanism. Stud. Health Technol. Inform. 2012;176:20–25.
    1. Castelein R.M., van Dieën J.H., Smit T.H. The role of dorsal shear forces in the pathogenesis of adolescent idiopathic scoliosis--a hypothesis. Med. Hypotheses. 2005;65(3):501–508. doi: 10.1016/j.mehy.2005.03.025.
    1. Le Febvre J., Triboulet-Chassevant A., Missirliu M.F., Lerique and Le Coeur Electromyographic data in idiopathic scoliosis. Arch. Phys. Med. Rehabil. 1961;42:710–711.
    1. Riddle H.F., Roaf R. Muscle imbalance in the causation of scoliosis. Lancet. 1955;268(6877):1245–1247. doi: 10.1016/S0140-6736(55)91020-5.
    1. Weiss M., Milkowska A., Kozinska M. Zachowawcze Leczenie boczynch strzywien Kregoslupa w swietle badan electromiograficzynch. Chirurgia Narzaclow Ruchu Ortopedia Polska. 1957;22:197–209.
    1. Le Febvre J., Triboulet-Chassevant A., Missirliu M.F. Electromyographic data in idiopathic scoliosis. Arch. Phys. Med. Rehabil. 1961;42:710–711.
    1. Henssge J. Electromyographischer Beitrag zum Skoliosen problem. Zeit-Schrift fur Orthopaedie und ihr Grenzgebiete. 1964;99:167–195.
    1. Alexander M.A., Season E.H. Idiopathic scoliosis: an electromyographic study. Arch. Phys. Med. Rehabil. 1978;59(7):314–315.
    1. Goodgold J. Anatomical correlates of clinical electromyography. Baltimore: Williams and Wilkins; 1974.
    1. Henssge J. Are signs of denervation of muscles of the spine primary or secondary findings in cases of scoliosis? Journal of Bone and Joint Surgery. 1968;50B:882–886.
    1. Peretti G., Velluti C. La teoria neuro-muscolare nella etiopatonensi della Scoliosi giovanile. Rass. Med. Sarda. 1969;72:33–46.
    1. Butterworth T.R., Jr, James C. Electromyographic studies in idiopathic scoliosis. South. Med. J. 1969;62(8):1008–1010. doi: 10.1097/00007611-196908000-00026.
    1. James J.I., Lloyd-Roberts G.C., Pilcher M.F. Infantile structural scoliosis. J. Bone Joint Surg. Br. 1959;41-B:719–735.
    1. Hirano S. Electron microscopic studies on back muscles in scoliosis. Nippon Seikeigeka Gakkai Zasshi. 1972;46(1):47–62.
    1. Fidler M.W., Jowett R.L., Troup J.D. Histochemical study of the function of multividus in scoliosis. In: Zorab P.A., editor. Scoliosis and muscle. London, UK: William Heinemann; 1974. pp. 184–192.
    1. Fidler M.W., Jowett R.L. Muscle imbalance in the aetiology of scoliosis. J. Bone Joint Surg. Br. 1976;58(2):200–201.
    1. Spencer G.S., Zorab P.A. Spinal muscle in scoliosis. Comparison of normal and scoliotic rabbits. J. Neurol. Sci. 1976;30(2-3):405–410. doi: 10.1016/0022-510X(76)90143-X.
    1. Spencer G.S., Eccles M.J. Spinal muscle in scoliosis. Part 2. The proportion and size of type 1 and type 2 skeletal muscle fibres measured using a computer-controlled microscope. J. Neurol. Sci. 1976;30(1):143–154. doi: 10.1016/0022-510X(76)90262-8.
    1. Yarom R., Robin G.C. Studies on spinal and peripheral muscles from patients with scoliosis. Spine. 1979;4(1):12–21. doi: 10.1097/00007632-197901000-00003.
    1. Schwartzmann J.R., Miles M. Experimental production of scoliosis in rats and mice. Journal of Bone and Joint Surgery. 1945;27:59–69.
    1. Liszka O. Spinal cord mechanisms leading to scoliosis in animal experiments. Acta Med. Pol. 1961;2:45–63.
    1. MacEwen G.D., Bunnell W.P., Sriram K. Acute neurological complications in the treatment of scoliosis. A report of the scoliosis research society. J. Bone Joint Surg. Am. 1975;57(3):404–408. doi: 10.2106/00004623-197557030-00020.
    1. Yamada K., Ikata T., Yamamoto H., Nakagawa Y., Tanaka H. Equilibrium function in scoliosis and active corrective plaster jacket for the treatment. Tokushima J. Exp. Med. 1969;16(1):1–7.
    1. Sahlstrend T., Petruson B. Postural effects on nystagmus response during caloric labyrinthine stimulation in patients with adolescent idiopathic scoliosis. II. An electro-nystagmographic study. Acta Orthop. Scand. 1979;50(6 Pt 2):771–775. doi: 10.3109/17453677908991308.
    1. Mirovsky Y., Blankstein A., Shlamkovitch N. Postural control in patients with severe idiopathic scoliosis: A prospective study. J. Pediatr. Orthop. B. 2006;15(3):168–171. doi: 10.1097/01.bpb.0000194436.73592.d0.
    1. Hawasli AH, Hullar TE, Dorward IG. Idiopathic scoliosis and the vestibular system. European spine journal: Official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2015;24(2):227–233. doi: 10.1007/s00586-014-3701-4.
    1. White A.A., Panjabi M.M. Clinical Biomechanics of the Spine. 2nd ed. Philadelphia, PA: J.B. Lippincott Co.; 1990. Practical Biomechanics of Scoliosis and Kyphosis. pp. 128–168.
    1. Roth M. Idiopathic scoliosis from the point of view of the neuroradiologist. Neuroradiology. 1981;21(3):133–138.
    1. Roth M. Idiopathic scoliosis caused by a short spinal cord. Acta Radiol. Diagn. (Stockh.) 1968;7(3):257–271. doi: 10.1177/028418516800700308.
    1. Porter R.W. Idiopathic scoliosis: The relation between the vertebral canal and the vertebral bodies. Spine. 2000;25(11):1360–1366. doi: 10.1097/00007632-200006010-00007.
    1. Porter R.W. Can a short spinal cord produce scoliosis? Eur. Spine J. 2001;10(1):2–9. doi: 10.1007/s005860000188.
    1. Porter R.W. The pathogenesis of idiopathic scoliosis: Uncoupled neuro-osseous growth? Eur. Spine J. 2001;10(6):473–481. doi: 10.1007/s005860100311.
    1. Chu W.C., Lam W.M., Ng B.K., Tze-Ping L., Lee K.M., Guo X., Cheng J.C., Burwell R.G., Dangerfield P.H., Jaspan T. Relative shortening and functional tethering of spinal cord in adolescent scoliosis - Result of asynchronous neuro-osseous growth, summary of an electronic focus group debate of the IBSE. Scoliosis. 2008;3:8. doi: 10.1186/1748-7161-3-8.
    1. Lao L.F., Shen J.X., Chen Z.G., Wang Y.P., Wen X.S., Qiu G.X. Uncoupled neuro-osseous growth in adolescent idiopathic scoliosis? A preliminary study of 90 adolescents with whole-spine three-dimensional magnetic resonance imaging. Eur. Spine J. 2011;20(7):1081–1086. doi: 10.1007/s00586-010-1471-1.
    1. Chu W.C., Rasalkar D.D., Cheng J.C. Asynchronous neuro-osseous growth in adolescent idiopathic scoliosis-MRI-based research. Pediatr. Radiol. 2011;41(9):1100–1111. doi: 10.1007/s00247-010-1778-4.
    1. Burwell R.G., Dangerfield P.H., Freeman B.J. Concepts on the pathogenesis of adolescent idiopathic scoliosis. Bone growth and mass, vertebral column, spinal cord, brain, skull, extra-spinal left-right skeletal length asymmetries, disproportions and molecular pathogenesis. Stud. Health Technol. Inform. 2008;135:3–52.
    1. Chu W.C., Man G.C., Lam W.W., Yeung B.H., Chau W.W., Ng B.K., Lam T.P., Lee K.M., Cheng J.C. Morphological and functional electrophysiological evidence of relative spinal cord tethering in adolescent idiopathic scoliosis. Spine. 2008;33(6):673–680. doi: 10.1097/BRS.0b013e318166aa58.
    1. Chu W.C., Lam W.W., Chan Y.L., Ng B.K., Lam T.P., Lee K.M., Guo X., Cheng J.C. Relative shortening and functional tethering of spinal cord in adolescent idiopathic scoliosis?: Study with multiplanar reformat magnetic resonance imaging and somatosensory evoked potential. Spine. 2006;31(1):E19–E25. doi: 10.1097/01.brs.0000193892.20764.51.
    1. Davids J.R., Chamberlin E., Blackhurst D.W. Indications for magnetic resonance imaging in presumed adolescent idiopathic scoliosis. J. Bone Joint Surg. Am. 2004;86-A(10):2187–2195. doi: 10.2106/00004623-200410000-00009.
    1. Barutçuoğlu M., Selçuki M., Umur A.S., Mete M., Gurgen S.G., Selcuki D. Scoliosis may be the first symptom of the tethered spinal cord. Indian J. Orthop. 2016;50(1):80–86. doi: 10.4103/0019-5413.173506.
    1. Zhang W., Sha S., Xu L., Liu Z., Qiu Y., Zhu Z. The prevalence of intraspinal anomalies in infantile and juvenile patients with “presumed idiopathic” scoliosis: A MRI-based analysis of 504 patients. BMC Musculoskelet. Disord. 2016;17:189. doi: 10.1186/s12891-016-1026-7.
    1. Yeom J.S., Lee C.K., Park K.W., Lee J.H., Lee D.H., Wang K.C., Chang B.S. Scoliosis associated with syringomyelia: Analysis of MRI and curve progression. Eur. Spine J. 2007;16(10):1629–1635. doi: 10.1007/s00586-007-0472-1.
    1. Godzik J., Holekamp T.F., Limbrick D.D., Lenke L.G., Park T.S., Ray W.Z., Bridwell K.H., Kelly M.P. Risks and outcomes of spinal deformity surgery in Chiari malformation, Type 1, with syringomyelia versus adolescent idiopathic scoliosis. Spine J. 2015;15(9):2002–2008. doi: 10.1016/j.spinee.2015.04.048.
    1. Royo-Salvador M.B., Solé-Llenas J., Doménech J.M., González-Adrio R. Results of the section of the filum terminale in 20 patients with syringomyelia, scoliosis and Chiari malformation. Acta Neurochir. (Wien) 2005;147(5):515–523. doi: 10.1007/s00701-005-0482-y.
    1. Vassilyadi M., Tataryn Z., Merziotis M. Retethering in children after sectioning of the filum terminale. Pediatr. Neurosurg. 2012;48(6):335–341. doi: 10.1159/000353477.
    1. Weiss H.R. Application of extracorporeal shockwaves in the treatment of scoliosis: A case report. J. Phys. Ther. Sci. 2017;29(5):946–949. doi: 10.1589/jpts.29.946.
    1. Weiss H.R., Seibel S., Moramarco M. Adolescent idiopathic scoliosis: etiological concepts and implication for treatment. OA Musculoskeletal Medicine. 2013;1(3):21. doi: 10.13172/2052-9287-1-3-870.
    1. Burwell R.G., Cole A.A., Cook T.A., Grivas T.B., Kiel A.W., Moulton A., Thirlwall A.S., Upadhyay S.S., Webb J.K., Wemyss-Holden S.A., Whitwell D.J., Wojcik A.S., Wythers D.J. Pathogenesis of idiopathic scoliosis. The Nottingham concept. Acta Orthop. Belg. 1992;58(I) Suppl. 1:33–58.
    1. Machida M., Murai I., Miyashita Y., Dubousset J., Yamada T., Kimura J. Pathogenesis of idiopathic scoliosis. Experimental study in rats. Spine. 1999;24(19):1985–1989. doi: 10.1097/00007632-199910010-00004.
    1. Lowe T.G., Edgar M., Margulies J.Y., Miller N.H., Raso V.J., Reinker K.A., Rivard C.H. Etiology of idiopathic scoliosis: Current trends in research. J. Bone Joint Surg. Am. 2000;82-A(8):1157–1168. doi: 10.2106/00004623-200008000-00014.
    1. Lovejoy C.O. The natural history of human gait and posture. Part 1. Spine and pelvis. Gait Posture. 2005;21(1):95–112.
    1. Gorman K.F., Breden F. Idiopathic-type scoliosis is not exclusive to bipedalism. Med. Hypotheses. 2009;72(3):348–352. doi: 10.1016/j.mehy.2008.09.052.
    1. O’Kelly C., Wang X., Raso J., Moreau M., Mahood J., Zhao J., Bagnall K. The production of scoliosis after pinealectomy in young chickens, rats, and hamsters. Spine. 1999;24(1):35–43. doi: 10.1097/00007632-199901010-00009.
    1. Cheung K.M., Wang T., Poon A.M., Carl A., Tranmer B., Hu Y., Luk K.D., Leong J.C. The effect of pinealectomy on scoliosis development in young nonhuman primates. Spine. 2005;30(18):2009–2013. doi: 10.1097/01.brs.0000179087.38730.5d.
    1. Machida M., Saito M., Dubousset J., Yamada T., Kimura J., Shibasaki K. Pathological mechanism of idiopathic scoliosis: Experimental scoliosis in pinealectomized rats. Eur. Spine J. 2005;14(9):843–848. doi: 10.1007/s00586-004-0806-1.
    1. Hakkarainen S. Experimental scoliosis: production of structural scoliosis by immobilization of young rabbits in a scoliotic position. Acta Orthopaedica Scandinavica. 1981;192(1) Supplement 52:843–848. doi: 10.3109/ort.1981.52.suppl-192.01.
    1. Michelsson J.E. The development of spinal deformity in experimental scoliosis. Acta Orthop. Scand. Suppl. 1965;81(1-91)
    1. Kawakami N., Deguchi M., Kanemura T. Animal models of scoliosis. In: An Y.H., Friedman R.J., editors. Animal Models in Orthopaedic Research. Boca Raton, FL: CRC Press; 1999. pp. 549–564.
    1. Ponsetti I.U. Experimental scoliosis. Bull. Hosp. Jt. Dis. 1958;19:216.
    1. Janssen M.M., de Wilde R.F., Kouwenhoven J.W., Castelein R.M. Experimental animal models in scoliosis research: A review of the literature. Spine J. 2011;11(4):347–358. doi: 10.1016/j.spinee.2011.03.010.
    1. Gorman K.F., Tredwell S.J., Breden F. The mutant guppy syndrome curveback as a model for human heritable spinal curvature. Spine. 2007;32(7):735–741. doi: 10.1097/01.brs.0000259081.40354.e2.
    1. Gorman K.F., Christians J.K., Parent J., Ahmadi R., Weigel D., Dreyer C., Breden F. A major QTL controls susceptibility to spinal curvature in the curveback guppy. BMC Genet. 2011;12:16. doi: 10.1186/1471-2156-12-16.
    1. Qiu X.S., Tang N.L., Yeung H.Y., Lee K.M., Hung V.W., Ng B.K., Ma S.L., Kwok R.H., Qin L., Qiu Y., Cheng J.C. Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine. 2007;32(16):1748–1753. doi: 10.1097/BRS.0b013e3180b9f0ff.
    1. Bobyn J.D., Little D.G., Gray R., Schindeler A. Animal models of scoliosis. J. Orthop. Res. 2015;33(4):458–467. doi: 10.1002/jor.22797.
    1. Hayes M., Gao X., Yu L.X., Paria N., Henkelman R.M., Wise C.A., Ciruna B. Ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nat. Commun. 2014;5:4777. doi: 10.1038/ncomms5777.
    1. Buchan J.G., Gray R.S., Gansner J.M., Alvarado D.M., Burgert L., Gitlin J.D., Gurnett C.A., Goldsmith M.I. Kinesin family member 6 (kif6) is necessary for spine development in zebrafish. Dev. Dyn. 2014;243(12):1646–1657. doi: 10.1002/dvdy.24208.
    1. Guo L., Yamashita H., Kou I., Takimoto A., Meguro-Horike M., Horike S., Sakuma T., Miura S., Adachi T., Yamamoto T., Ikegawa S., Hiraki Y., Shukunami C. Functional investigation of a non-coding variant associated with adolescent idiopathic scoliosis in zebrafish: Elevated expression of the ladybird homeobox gene causes body axis deformation. PLoS Genet. 2016;12(1):e1005802. doi: 10.1371/journal.pgen.1005802.
    1. Grimes D.T., Boswell C.W., Morante N.F., Henkelman R.M., Burdine R.D., Ciruna B. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science. 2016;352(6291):1341–1344. doi: 10.1126/science.aaf6419.
    1. Staub HA. Eine skoliotikerfamilie ein beitrag zur frage der kongenitalen skoliose und der hereditaet der skoliosen. 1922.
    1. Faber A. Skoliose bei eineugen zwillingen. Der Erbarzt. 1935;2:102.
    1. De George F.V., Fisher R.L. Idiopathic scoliosis: Genetic and environmental aspects. J. Med. Genet. 1967;4(4):251–257. doi: 10.1136/jmg.4.4.251.
    1. Cowell H.R., Hall J.N., MacEwen G.D. Genetic aspects of idiopathic scoliosis. A Nicholas Andry Award essay, 1970. Clin. Orthop. Relat. Res. 1972;86(86):121–131. doi: 10.1097/00003086-197207000-00018.
    1. Riseborough E.J., Wynne-Davies R. A genetic survey of idiopathic scoliosis in Boston, Massachusetts. J. Bone Joint Surg. Am. 1973;55(5):974–982. doi: 10.2106/00004623-197355050-00006.
    1. Wynne-Davies R. Familial Scoliosis.. Proceedings of a symposium on scoliosis. National fund for research into poliomyelitis and other crippling diseases.; Livingstone Ltd; London, UK. 1965.
    1. Kruse L.M., Buchan J.G., Gurnett C.A., Dobbs M.B. Polygenic threshold model with sex dimorphism in adolescent idiopathic scoliosis: The Carter effect. J. Bone Joint Surg. Am. 2012;94(16):1485–1491. doi: 10.2106/JBJS.K.01450.
    1. Grauers A., Einarsdottir E., Gerdhem P. Genetics and pathogenesis of idiopathic scoliosis. Scoliosis Spinal Disord. 2016;11:45. doi: 10.1186/s13013-016-0105-8.
    1. Gorman K.F., Julien C., Moreau A. The genetic epidemiology of idiopathic scoliosis. Eur. Spine J. 2012;21(10):1905–1919. doi: 10.1007/s00586-012-2389-6.
    1. Montanaro L., Parisini P., Greggi T., Di Silvestre M., Campoccia D., Rizzi S., Arciola C.R. Evidence of a linkage between matrilin-1 gene (MATN1) and idiopathic scoliosis. Scoliosis. 2006;1:21. doi: 10.1186/1748-7161-1-21.
    1. Chen Z., Tang N.L., Cao X., Qiao D., Yi L., Cheng J.C., Qiu Y. Promoter polymorphism of matrilin-1 gene predisposes to adolescent idiopathic scoliosis in a Chinese population. Eur. J. Hum. Genet. 2009;17(4):525–532. doi: 10.1038/ejhg.2008.203.
    1. Ocaka L., Zhao C., Reed J.A., Ebenezer N.D., Brice G., Morley T., Mehta M., O’Dowd J., Weber J.L., Hardcastle A.J., Child A.H. Assignment of two loci for autosomal dominant adolescent idiopathic scoliosis to chromosomes 9q31.2-q34.2 and 17q25.3-qtel. J. Med. Genet. 2008;45(2):87–92. doi: 10.1136/jmg.2007.051896.
    1. Jiang J., Qian B., Mao S., Zhao Q., Qiu X., Liu Z., Qiu Y. A promoter polymorphism of tissue inhibitor of metalloproteinase-2 gene is associated with severity of thoracic adolescent idiopathic scoliosis. Spine. 2012;37(1):41–47. doi: 10.1097/BRS.0b013e31820e71e3.
    1. Aulisa L., Papaleo P., Pola E., Angelini F., Aulisa A.G., Tamburrelli F.C., Pola P., Logroscino C.A. Association between IL-6 and MMP-3 gene polymorphisms and adolescent idiopathic scoliosis: A case-control study. Spine. 2007;32(24):2700–2702. doi: 10.1097/BRS.0b013e31815a5943.
    1. Mórocz M., Czibula A., Grózer Z.B., Szécsényi A., Almos P.Z., Raskó I., Illés T. Association study of BMP4, IL6, Leptin, MMP3, and MTNR1B gene promoter polymorphisms and adolescent idiopathic scoliosis. Spine. 2011;36(2):E123–E130. doi: 10.1097/BRS.0b013e318a511b0e.
    1. Inoue M., Minami S., Nakata Y., Kitahara H., Otsuka Y., Isobe K., Takaso M., Tokunaga M., Nishikawa S., Maruta T., Moriya H. Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine. 2002;27(21):2357–2362. doi: 10.1097/00007632-200211010-00009.
    1. Wu J., Qiu Y., Zhang L., Sun Q., Qiu X., He Y. Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine. 2006;31(10):1131–1136. doi: 10.1097/01.brs.0000216603.91330.6f.
    1. Zhao D., Qiu G.X., Wang Y.P., Zhang J.G., Shen J.X., Wu Z.H. Association between adolescent idiopathic scoliosis with double curve and polymorphisms of calmodulin1 gene/estrogen receptor-α gene. Orthop. Surg. 2009;1(3):222–230. doi: 10.1111/j.1757-7861.2009.00038.x.
    1. Zhang H.Q., Lu S.J., Tang M.X., Chen L.Q., Liu S.H., Guo C.F., Wang X.Y., Chen J., Xie L. Association of estrogen receptor beta gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine. 2009;34(8):760–764. doi: 10.1097/BRS.0b013e31818ad5ac.
    1. Suh K.T., Eun I.S., Lee J.S. Polymorphism in vitamin D receptor is associated with bone mineral density in patients with adolescent idiopathic scoliosis. Eur. Spine J. 2010;19(9):1545–1550. doi: 10.1007/s00586-010-1385-y.
    1. Gao X., Gordon D., Zhang D., Browne R., Helms C., Gillum J., Weber S., Devroy S., Swaney S., Dobbs M., Morcuende J., Sheffield V., Lovett M., Bowcock A., Herring J., Wise C. CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am. J. Hum. Genet. 2007;80(5):957–965. doi: 10.1086/513571.
    1. Wang H., Wu Z., Zhuang Q., Fei Q., Zhang J., Liu Y., Wang Y., Ding Y., Qiu G. Association study of tryptophan hydroxylase 1 and arylalkylamine N-acetyltransferase polymorphisms with adolescent idiopathic scoliosis in Han Chinese. Spine. 2008;33(20):2199–2203. doi: 10.1097/BRS.0b013e31817c03f9.
    1. Eun I.S., Park W.W., Suh K.T., Kim J.I., Lee J.S. Association between osteoprotegerin gene polymorphism and bone mineral density in patients with adolescent idiopathic scoliosis. Eur. Spine J. 2009;18(12):1936–1940. doi: 10.1007/s00586-009-1145-z.
    1. Peng Y., Liang G., Pei Y., Ye W., Liang A., Su P. Genomic polymorphisms of g-protein estrogen receptor 1 are associated with severity of adolescent idiopathic scoliosis. Int. Orthop. 2011
    1. Yeung H.Y., Tang N.L., Lee K.M., Ng B.K., Hung V.W., Kwok R., Guo X., Qin L., Cheng J.C. Genetic association study of insulin-like growth factor-I (IGF-I) gene with curve severity and osteopenia in adolescent idiopathic scoliosis. Stud. Health Technol. Inform. 2006;123:18–24.
    1. Baschal E.E., Wethey C.I., Swindle K., Baschal R.M., Gowan K., Tang N.L., Alvarado D.M., Haller G.E., Dobbs M.B., Taylor M.R., Gurnett C.A., Jones K.L., Miller N.H. Exome sequencing identifies a rare HSPG2 variant associated with familial idiopathic scoliosis. G3 (Bethesda) 2014;5(2):167–174. doi: 10.1534/g3.114.015669.
    1. Buchan J.G., Alvarado D.M., Haller G.E., Cruchaga C., Harms M.B., Zhang T., Willing M.C., Grange D.K., Braverman A.C., Miller N.H., Morcuende J.A., Tang N.L., Lam T.P., Ng B.K., Cheng J.C., Dobbs M.B., Gurnett C.A. Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum. Mol. Genet. 2014;23(19):5271–5282. doi: 10.1093/hmg/ddu224.
    1. Haller G., Alvarado D., Mccall K., Yang P., Cruchaga C., Harms M., Goate A., Willing M., Morcuende J.A., Baschal E., Miller N.H., Wise C., Dobbs M.B., Gurnett C.A. A polygenic burden of rare variants across extracellular matrix genes among individuals with adolescent idiopathic scoliosis. Hum. Mol. Genet. 2016;25(1):202–209. doi: 10.1093/hmg/ddv463.
    1. Cao Y., Min J., Zhang Q., Li H., Li H. Associations of LBX1 gene and adolescent idiopathic scoliosis susceptibility: A meta-analysis based on 34,626 subjects. BMC Musculoskelet. Disord. 2016;17:309. doi: 10.1186/s12891-016-1139-z.
    1. Takahashi Y., Kou I., Takahashi A., Johnson T.A., Kono K., Kawakami N., Uno K., Ito M., Minami S., Yanagida H., Taneichi H., Tsuji T., Suzuki T., Sudo H., Kotani T., Watanabe K., Chiba K., Hosono N., Kamatani N., Tsunoda T., Toyama Y., Kubo M., Matsumoto M., Ikegawa S. A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat. Genet. 2011;43(12):1237–1240. doi: 10.1038/ng.974.
    1. Londono D., Kou I., Johnson T.A., Sharma S., Ogura Y., Tsunoda T., Takahashi A., Matsumoto M., Herring J.A., Lam T.P., Wang X., Tam E.M., Song Y.Q., Fan Y.H., Chan D., Cheah K.S., Qiu X., Jiang H., Huang D., Su P., Sham P., Cheung K.M., Luk K.D., Gordon D., Qiu Y., Cheng J., Tang N., Ikegawa S., Wise C.A., TSRHC IS Clinical Group. International Consortium for Scoliosis Genetics. Japanese Scoliosis Clinical Research Group A meta-analysis identifies adolescent idiopathic scoliosis association with LBX1 locus in multiple ethnic groups. J. Med. Genet. 2014;51(6):401–406. doi: 10.1136/jmedgenet-2013-102067.
    1. Gao W., Peng Y., Liang G., Liang A., Ye W., Zhang L., Sharma S., Su P., Huang D. Association between common variants near LBX1 and adolescent idiopathic scoliosis replicated in the Chinese Han population. PLoS One. 2013;8(1):e53234. doi: 10.1371/journal.pone.0053234.
    1. Grauers A., Wang J., Einarsdottir E., Simony A., Danielsson A., Åkesson K., Ohlin A., Halldin K., Grabowski P., Tenne M., Laivuori H., Dahlman I., Andersen M., Christensen S.B., Karlsson M.K., Jiao H., Kere J., Gerdhem P. Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis. Spine J. 2015;15(10):2239–2246. doi: 10.1016/j.spinee.2015.05.013.
    1. Kou I., Takahashi Y., Johnson T.A., Takahashi A., Guo L., Dai J., Qiu X., Sharma S., Takimoto A., Ogura Y., Jiang H., Yan H., Kono K., Kawakami N., Uno K., Ito M., Minami S., Yanagida H., Taneichi H., Hosono N., Tsuji T., Suzuki T., Sudo H., Kotani T., Yonezawa I., Londono D., Gordon D., Herring J.A., Watanabe K., Chiba K., Kamatani N., Jiang Q., Hiraki Y., Kubo M., Toyama Y., Tsunoda T., Wise C.A., Qiu Y., Shukunami C., Matsumoto M., Ikegawa S. Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat. Genet. 2013;45(6):676–679. doi: 10.1038/ng.2639.
    1. Xu J.F., Yang G.H., Pan X.H., Zhang S.J., Zhao C., Qiu B.S., Gu H.F., Hong J.F., Cao L., Chen Y., Xia B., Bi Q., Wang Y.P. Association of GPR126 gene polymorphism with adolescent idiopathic scoliosis in Chinese populations. Genomics. 2015;105(2):101–107. doi: 10.1016/j.ygeno.2014.11.009.
    1. Qin X., Xu L., Xia C., Zhu W., Sun W., Liu Z., Qiu Y., Zhu Z. Genetic variant of GPR126 gene is functionally associated with adolescent idiopathic scoliosis in Chinese population. Spine. 2017;42(19):E1098–E1103. doi: 10.1097/BRS.0000000000002123. Epub Ahead of Print.
    1. Ogura Y., Kou I., Miura S., Takahashi A., Xu L., Takeda K., Takahashi Y., Kono K., Kawakami N., Uno K., Ito M., Minami S., Yonezawa I., Yanagida H., Taneichi H., Zhu Z., Tsuji T., Suzuki T., Sudo H., Kotani T., Watanabe K., Hosogane N., Okada E., Iida A., Nakajima M., Sudo A., Chiba K., Hiraki Y., Toyama Y., Qiu Y., Shukunami C., Kamatani Y., Kubo M., Matsumoto M., Ikegawa S. A functional SNP in BNC2 is associated with adolescent idiopathic scoliosis. Am. J. Hum. Genet. 2015;97(2):337–342. doi: 10.1016/j.ajhg.2015.06.012.
    1. Sharma S., Londono D., Eckalbar W.L., Gao X., Zhang D., Mauldin K., Kou I., Takahashi A., Matsumoto M., Kamiya N., Murphy K.K., Cornelia R., Herring J.A., Burns D., Ahituv N., Ikegawa S., Gordon D., Wise C.A., TSRHC Scoliosis Clinical Group. Japan Scoliosis Clinical Research Group A PAX1 enhancer locus is associated with susceptibility to idiopathic scoliosis in females. Nat. Commun. 2015;6:6452. doi: 10.1038/ncomms7452.
    1. Ryzhkov I.I., Borzilov E.E., Churnosov M.I., Ataman A.V., Dedkov A.A., Polonikov A.V. Transforming growth factor beta 1 is a novel susceptibility gene for adolescent idiopathic scoliosis. Spine. 2013;38(12):E699–E704. doi: 10.1097/BRS.0b013e31828de9e1.
    1. Mao S., Xu L., Zhu Z., Qian B., Qiao J., Yi L., Qiu Y. Association between genetic determinants of peak height velocity during puberty and predisposition to adolescent idiopathic scoliosis. Spine. 2013;38(12):1034–1039. doi: 10.1097/BRS.0b013e318287fcfd.
    1. Zhou S., Qiu X.S., Zhu Z.Z., Wu W.F., Liu Z., Qiu Y. A single-nucleotide polymorphism rs708567 in the IL-17RC gene is associated with a susceptibility to and the curve severity of adolescent idiopathic scoliosis in a Chinese Han population: A case-control study. BMC Musculoskelet. Disord. 2012;13:181. doi: 10.1186/1471-2474-13-181.
    1. Patten S.A., Margaritte-Jeannin P., Bernard J.C., Alix E., Labalme A., Besson A., Girard S.L., Fendri K., Fraisse N., Biot B., Poizat C., Campan-Fournier A., Abelin-Genevois K., Cunin V., Zaouter C., Liao M., Lamy R., Lesca G., Menassa R., Marcaillou C., Letexier M., Sanlaville D., Berard J., Rouleau G.A., Clerget-Darpoux F., Drapeau P., Moldovan F., Edery P. Functional variants of POC5 identified in patients with idiopathic scoliosis. J. Clin. Invest. 2015;125(3):1124–1128. doi: 10.1172/JCI77262.
    1. Xu L., Xia C., Sun W., Qin X., Qiu Y., Zhu Z. Genetic polymorphism of NUCKS1 is associated with the susceptibility of adolescent idiopathic scoliosis. Spine. 2017;42(21):1629–1634. doi: 10.1097/BRS.0000000000002167. Epub Ahead of Print.
    1. Fendri K., Patten S.A., Kaufman G.N., Zaouter C., Parent S., Grimard G., Edery P., Moldovan F. Microarray expression profiling identifies genes with altered expression in Adolescent Idiopathic Scoliosis. Eur. Spine J. 2013;22(6):1300–1311. doi: 10.1007/s00586-013-2728-2.
    1. Burwell R.G., Clark E.M., Dangerfield P.H., Moulton A. Adolescent idiopathic scoliosis (AIS): A multifactorial cascade concept for pathogenesis and embryonic origin. Scoliosis Spinal Disord. 2016;11:8. doi: 10.1186/s13013-016-0063-1.
    1. Moreau A., Akoumé Ndong M.Y., Azeddine B., Franco A., Rompré P.H., Roy-Gagnon M.H., Turgeon I., Wang D., Bagnall K.M., Poitras B., Labelle H., Rivard C.H., Grimard G., Ouellet J., Parent S., Moldovan F. Molecular and genetic aspects of idiopathic scoliosis. Blood test for idiopathic scoliosis. Orthopade. 2009;38(2):114–116, 118-121. doi: 10.1007/s00132-008-1362-x.
    1. Akoume M.Y., Azeddine B., Turgeon I., Franco A., Labelle H., Poitras B., Rivard C.H., Grimard G., Ouellet J., Parent S., Moreau A. Cell-based screening test for idiopathic scoliosis using cellular dielectric spectroscopy. Spine. 2010;35(13):E601–E608. doi: 10.1097/BRS.0b013e3181cf39ff.
    1. Carlson B. ScoliScore AIS prognostic test personalizes treatment for children with spinal curve. Biotechnol. Healthc. 2011;8(2):30–31.
    1. Roye B.D., Wright M.L., Matsumoto H., Yorgova P., McCalla D., Hyman J.E., Roye D.P., Shah S.A., Vitale M.G. An independent evaluation of the validity of a DNA-based prognostic test for adolescent idiopathic scoliosis. J. Bone Joint Surg. Am. 2015;97(24):1994–1998. doi: 10.2106/JBJS.O.00217.
    1. Tang Q.L., Julien C., Eveleigh R., Bourque G., Franco A., Labelle H., Grimard G., Parent S., Ouellet J., Mac-Thiong J.M., Gorman K.F., Moreau A. A replication study for association of 53 single nucleotide polymorphisms in ScoliScore test with adolescent idiopathic scoliosis in French-Canadian population. Spine. 2015;40(8):537–543. doi: 10.1097/BRS.0000000000000807.
    1. Ward K., Ogilvie J.W., Singleton M.V., Chettier R., Engler G., Nelson L.M. Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosis. Spine. 2010;35(25):E1455–E1464. doi: 10.1097/BRS.0b013e3181ed2de1.
    1. Simony A., Carreon L.Y., Hjmark K., Kyvik K.O., Andersen M.O. Concordance rates of adolescent idiopathic scoliosis in a Danish twin population. Spine. 2016;41(19):1503–1507. doi: 10.1097/BRS.0000000000001681.
    1. Andersen M.O., Thomsen K., Kyvik K.O. Adolescent idiopathic scoliosis in twins: A population-based survey. Spine. 2007;32(8):927–930. doi: 10.1097/01.brs.0000259865.08984.00.
    1. Kesling K.L., Reinker K.A. Scoliosis in twins. A meta-analysis of the literature and report of six cases. Spine. 1997;22(17):2009–2014. doi: 10.1097/00007632-199709010-00014.
    1. Inoue M., Minami S., Kitahara H., Otsuka Y., Nakata Y., Takaso M., Moriya H. Idiopathic scoliosis in twins studied by DNA fingerprinting: The incidence and type of scoliosis. J. Bone Joint Surg. Br. 1998;80(2):212–217. doi: 10.1302/0301-620X.80B2.7544.
    1. Carr A.J. Adolescent idiopathic scoliosis in identical twins. J. Bone Joint Surg. Br. 1990;72(6):1077.
    1. Hermus J.P., van Rhijn L.W., van Ooij A. Non-genetic expression of adolescent idiopathic scoliosis: A case report and review of the literature. Eur. Spine J. 2007;16(Suppl. 3):338–341. doi: 10.1007/s00586-007-0335-9.
    1. Weiss H.R. Idiopathic scoliosis: how much of a genetic disorder? Report of five pairs of monozygotic twins. Dev. Neurorehabil. 2007;10(1):67–73. doi: 10.1080/13638490601005305.
    1. van Rhijn L.W., Jansen E.J., Plasmans C.M., Veraart B.E. Curve characteristics in monozygotic twins with adolescent idiopathic scoliosis: 3 new twin pairs and a review of the literature. Acta Orthop. Scand. 2001;72(6):621–625. doi: 10.1080/000164701317269058.
    1. Ward K., Ogilvie J., Argyle V., Nelson L., Meade M., Braun J., Chettier R. Polygenic inheritance of adolescent idiopathic scoliosis: A study of extended families in Utah. Am. J. Med. Genet. A. 2010;152A(5):1178–1188. doi: 10.1002/ajmg.a.33145.
    1. Fraga M.F., Ballestar E., Paz M.F., Ropero S., Setien F., Ballestar M.L., Heine-Suñer D., Cigudosa J.C., Urioste M., Benitez J., Boix-Chornet M., Sanchez-Aguilera A., Ling C., Carlsson E., Poulsen P., Vaag A., Stephan Z., Spector T.D., Wu Y.Z., Plass C., Esteller M. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA. 2005;102(30):10604–10609. doi: 10.1073/pnas.0500398102.
    1. Wong A.H., Gottesman I.I., Petronis A. Phenotypic differences in genetically identical organisms: The epigenetic perspective. Hum. Mol. Genet. 2005;14(Spec No 1):R11–R18. doi: 10.1093/hmg/ddi116.
    1. Silahtaroglu A., Stenvang J. MicroRNAs, epigenetics and disease. Essays Biochem. 2010;48(1):165–185. doi: 10.1042/bse0480165.
    1. Aguilera O., Fernández A.F., Muñoz A., Fraga M.F. Epigenetics and environment: A complex relationship. J. Appl. Physiol. 2010;109(1):243–251. doi: 10.1152/japplphysiol.00068.2010.
    1. Sinclair K.D., Allegrucci C., Singh R., Gardner D.S., Sebastian S., Bispham J., Thurston A., Huntley J.F., Rees W.D., Maloney C.A., Lea R.G., Craigon J., McEvoy T.G., Young L.E. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc. Natl. Acad. Sci. USA. 2007;104(49):19351–19356. doi: 10.1073/pnas.0707258104.
    1. Burwell R.G., Dangerfield P.H., Moulton A., Grivas T.B. Adolescent idiopathic scoliosis (AIS), environment, exposome and epigenetics: A molecular perspective of postnatal normal spinal growth and the etiopathogenesis of AIS with consideration of a network approach and possible implications for medical therapy. Scoliosis. 2011;6(1):26. doi: 10.1186/1748-7161-6-26.
    1. Goldberg C.J., Dowling F.E., Fogarty E.E., Moore D.P. Adolescent idiopathic scoliosis as developmental instability. Genetica. 1995;96(3):247–255. doi: 10.1007/BF01439579.
    1. Goldberg C.J., Fogarty E.E., Moore D.P., Dowling F.E. Scoliosis and developmental theory: Adolescent idiopathic scoliosis. Spine. 1997;22(19):2228–2237. doi: 10.1097/00007632-199710010-00006.
    1. Hawes M.C., O’Brien J.P. Scoliosis and the human genome project. Stud. Health Technol. Inform. 2008;135:97–111.
    1. Pratt W.B., Phippen W.G. Elevated hair copper level in idiopathic scoliosis: Preliminary observations. Spine. 1980;5(3):230–233. doi: 10.1097/00007632-198005000-00005.
    1. Dastych M., Cienciala J., Krbec M. Changes of selenium, copper, and zinc content in hair and serum of patients with idiopathic scoliosis. J. Orthop. Res. 2008;26(9):1279–1282. doi: 10.1002/jor.20629.
    1. Dastych M., Vlach O. Zinc status in patients with idiopathic scoliosis. Spine. 1990;15(2):65–66. doi: 10.1097/00007632-199002000-00002.
    1. Webb J.N., Gillespie W.J. Virus-like particles in paraspinal muscle in scoliosis. BMJ. 1976;2(6041):912–913. doi: 10.1136/bmj.2.6041.912.
    1. Green R.J., Webb J.N., Maxwell M.H. The nature of virus-like particles in the paraxial muscles of idiopathic scoliosis. J. Pathol. 1979;129(1):9–12. doi: 10.1002/path.1711290103.
    1. Worthington V., Shambaugh P. Nutrition as an environmental factor in the etiology of idiopathic scoliosis. J. Manipulative Physiol. Ther. 1993;16(3):169–173.
    1. Chlebna-Sokół D., Błaszczyk A., Trafalska E., Grzybowski A. Bone mineralization in children with skeletal system abnormalities in relation to dietary intake of some nutrients. Przegl. Lek. 2003;60(Suppl. 6):60–64.
    1. Balioglu M.B., Aydin C., Kargin D., Albayrak A., Atici Y., Tas S.K., Kaygusuz M.A. Vitamin-D measurement in patients with adolescent idiopathic scoliosis. J. Pediatr. Orthop. B. 2017;26(1):48–52. doi: 10.1097/BPB.0000000000000320.
    1. Batista R., Martins D.E., Hayashi Li F., Lazaretti-Castro M., Puerta E.B., Wajchenberg M. Association between vitamin D serum levels and adolescent idiopathic scoliosis. Scoliosis. 2014;9(Suppl. 1):O45. doi: 10.1186/1748-7161-9-S1-O45.
    1. Lee W.T., Cheung C.S., Tse Y.K., Guo X., Qin L., Ho S.C., Lau J., Cheng J.C. Generalized low bone mass of girls with adolescent idiopathic scoliosis is related to inadequate calcium intake and weight bearing physical activity in peripubertal period. Osteoporos. Int. 2005;16(9):1024–1035. doi: 10.1007/s00198-004-1792-1.
    1. Lee W.T., Cheng J.C., Cheung C.S., Guo X., Ho S., Lau J. Inadequate calcium intake is a significant determinant on generalised osteopenia in Hong Kong Chinese adolescents with idiopathic scoliosis. Wei Sheng Yan Jiu. 2003;32(6):568–572.
    1. Lips P. Interaction between vitamin D and calcium. Scand. J. Clin. Lab. Invest. Suppl. 2012;243:60–64.
    1. Clark E.M., Taylor H.J., Harding I., Hutchinson J., Nelson I., Deanfield J.E., Ness A.R., Tobias J.H. Association between components of body composition and scoliosis: A prospective cohort study reporting differences identifiable before the onset of scoliosis. J. Bone Miner. Res. 2014;29(8):1729–1736. doi: 10.1002/jbmr.2207.
    1. Sun X., Chu W.C., Cheng J.C., Zhu F., Zhu Z., Yu Y., Wang B., Qiu Y. Do adolescents with a severe idiopathic scoliosis have higher locations of the conus medullaris than healthy adolescents? J. Pediatr. Orthop. 2008;28(6):669–673. doi: 10.1097/BPO.0b013e3181834afa.
    1. Hesarikia H., Azma K., Kousari A., Nikouei F. Magnetic resonance imaging investigations of position of conus medullaris in adolescent idiopathic scoliosis as a peripheral neuropathy. Int. J. Clin. Exp. Med. 2015;8(4):5918–5924.
    1. Kong Y., Shi L., Hui S.C., Wang D., Deng M., Chu W.C., Cheng J.C. Variation in anisotropy and diffusivity along the medulla oblongata and the whole spinal cord in adolescent idiopathic scoliosis: A pilot study using diffusion tensor imaging. AJNR Am. J. Neuroradiol. 2014;35(8):1621–1627. doi: 10.3174/ajnr.A3912.
    1. Chu W.C., Man G.C., Lam W.W., Yeung B.H., Chau W.W., Ng B.K., Lam T.P., Lee K.M., Cheng J.C. A detailed morphologic and functional magnetic resonance imaging study of the craniocervical junction in adolescent idiopathic scoliosis. Spine. 2007;32(15):1667–1674. doi: 10.1097/BRS.0b013e318074d539.
    1. Thillard M.J. Déformations de la colonne vertébrale consécutives à l’épiphysectomie chez le poussin. C. R. Hebd. Seances Acad. Sci. 1959;248(8):1238–1240.
    1. Machida M., Dubousset J., Imamura Y., Miyashita Y., Yamada T., Kimura J. Melatonin. A possible role in pathogenesis of adolescent idiopathic scoliosis. Spine. 1996;21(10):1147–1152. doi: 10.1097/00007632-199605150-00005.
    1. Sadat-Ali M., al-Habdan I., al-Othman A. Adolescent idiopathic scoliosis. Is low melatonin a cause? Joint Bone Spine. 2000;67(1):62–64.
    1. Hilibrand A.S., Blakemore L.C., Loder R.T., Greenfield M.L., Farley F.A., Hensinger R.N., Hariharan M. The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis. Spine. 1996;21(10):1140–1146. doi: 10.1097/00007632-199605150-00004.
    1. Fagan A.B., Kennaway D.J., Sutherland A.D. Total 24-hour melatonin secretion in adolescent idiopathic scoliosis. A case-control study. Spine. 1998;23(1):41–46. doi: 10.1097/00007632-199801010-00009.
    1. Bagnall K.M., Raso V.J., Hill D.L., Moreau M., Mahood J.K., Jiang H., Russell G., Bering M., Buzzell G.R. Melatonin levels in idiopathic scoliosis. Diurnal and nocturnal serum melatonin levels in girls with adolescent idiopathic scoliosis. Spine. 1996;21(17):1974–1978. doi: 10.1097/00007632-199609010-00006.
    1. Moreau A., Wang D.S., Forget S., Azeddine B., Angeloni D., Fraschini F., Labelle H., Poitras B., Rivard C.H., Grimard G. Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine. 2004;29(16):1772–1781. doi: 10.1097/01.BRS.0000134567.52303.1A.
    1. Wang W.W., Man G.C., Wong J.H., Ng T.B., Lee K.M., Ng B.K., Yeung H.Y., Qiu Y., Cheng J.C. Abnormal response of the proliferation and differentiation of growth plate chondrocytes to melatonin in adolescent idiopathic scoliosis. Int. J. Mol. Sci. 2014;15(9):17100–17114. doi: 10.3390/ijms150917100.
    1. Grivas T.B., Savvidou O.D. Melatonin the “light of night” in human biology and adolescent idiopathic scoliosis. Scoliosis. 2007;2:6. doi: 10.1186/1748-7161-2-6.
    1. Brzezinski A. Melatonin in humans. N. Engl. J. Med. 1997;336(3):186–195. doi: 10.1056/NEJM199701163360306.
    1. Cardinali D.P., Ladizesky M., Boggio V., et al. Melatonin Use as a Bone-Protecting Substance. In: Pandi-Perumal S.R., Cardinali D.P., editors. Melatonin: Biological Basis of its Function in Health and Disease. 2004.
    1. Cardinali D.P., Ladizesky M.G., Boggio V., Cutrera R.A., Mautalen C. Melatonin effects on bone: Experimental facts and clinical perspectives. J. Pineal Res. 2003;34(2):81–87. doi: 10.1034/j.1600-079X.2003.00028.x.
    1. Fjelldal P.G., Grotmol S., Kryvi H., Gjerdet N.R., Taranger G.L., Hansen T., Porter M.J., Totland G.K. Pinealectomy induces malformation of the spine and reduces the mechanical strength of the vertebrae in Atlantic salmon, Salmo salar. J. Pineal Res. 2004;36(2):132–139. doi: 10.1046/j.1600-079X.2003.00109.x.
    1. Sanchez-Barcelo EJ, Mediavilla MD, Reiter RJ. Scientific basis for the potential use of melatonin in bone diseases: Osteoporosis and adolescent idiopathic scoliosis. J. Osteoporosis. 2010
    1. Antón-Tay F., Martínez I., Tovar R., Benítez-King G. Modulation of the subcellular distribution of calmodulin by melatonin in MDCK cells. J. Pineal Res. 1998;24(1):35–42. doi: 10.1111/j.1600-079X.1998.tb00363.x.
    1. Lowe T., Lawellin D., Smith D., Price C., Haher T., Merola A., O’Brien M. Platelet calmodulin levels in adolescent idiopathic scoliosis: Do the levels correlate with curve progression and severity? Spine. 2002;27(7):768–775. doi: 10.1097/00007632-200204010-00016.
    1. Acaroglu E., Akel I., Alanay A., Yazici M., Marcucio R. Comparison of the melatonin and calmodulin in paravertebral muscle and platelets of patients with or without adolescent idiopathic scoliosis. Spine. 2009;34(18):E659–E663. doi: 10.1097/BRS.0b013e3181a3c7a2.
    1. Lowe T.G., Burwell R.G., Dangerfield P.H. Platelet calmodulin levels in adolescent idiopathic scoliosis (AIS): Can they predict curve progression and severity? Summary of an electronic focus group debate of the IBSE. Eur. Spine J. 2004;13(3):257–265. doi: 10.1007/s00586-003-0655-3.
    1. Cheung C.S., Lee W.T., Tse Y.K., Lee K.M., Guo X., Qin L., Cheng J.C. Generalized osteopenia in adolescent idiopathic scoliosis-association with abnormal pubertal growth, bone turnover, and calcium intake? Spine. 2006;31(3):330–338. doi: 10.1097/01.brs.0000197410.92525.10.
    1. Hung V.W., Qin L., Cheung C.S., Lam T.P., Ng B.K., Tse Y.K., Guo X., Lee K.M., Cheng J.C. Osteopenia: A new prognostic factor of curve progression in adolescent idiopathic scoliosis. J. Bone Joint Surg. Am. 2005;87(12):2709–2716.
    1. Bartal E., Gage J.R. Idiopathic juvenile osteoporosis and scoliosis. J. Pediatr. Orthop. 1982;2(3):295–298. doi: 10.1097/01241398-198208000-00010.
    1. Burner W.L., III, Badger V.M., Sherman F.C. Osteoporosis and acquired back deformities. J. Pediatr. Orthop. 1982;2(4):383–385. doi: 10.1097/01241398-198210000-00006.
    1. Cheng J.C., Guo X. Osteopenia in adolescent idiopathic scoliosis. A primary problem or secondary to the spinal deformity? Spine. 1997;22(15):1716–1721. doi: 10.1097/00007632-199708010-00006.
    1. Cheng J.C., Tang S.P., Guo X., Chan C.W., Qin L. Osteopenia in adolescent idiopathic scoliosis: A histomorphometric study. Spine. 2001;26(3):E19–E23. doi: 10.1097/00007632-200102010-00002.
    1. Cook S.D., Harding A.F., Morgan E.L., Nicholson R.J., Thomas K.A., Whitecloud T.S., Ratner E.S. Trabecular bone mineral density in idiopathic scoliosis. J. Pediatr. Orthop. 1987;7(2):168–174. doi: 10.1097/01241398-198703000-00011.
    1. Cheng J.C., Guo X., Sher A.H. Persistent osteopenia in adolescent idiopathic scoliosis. A longitudinal follow up study. Spine. 1999;24(12):1218–1222. doi: 10.1097/00007632-199906150-00008.
    1. Cheng J.C., Qin L., Cheung C.S., Sher A.H., Lee K.M., Ng S.W., Guo X. Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J. Bone Miner. Res. 2000;15(8):1587–1595. doi: 10.1359/jbmr.2000.15.8.1587.
    1. Skogland L.B., Miller J.A. Growth related hormones in idiopathic scoliosis. An endocrine basis for accelerated growth. Acta Orthop. Scand. 1980;51(5):779–780. doi: 10.3109/17453678008990874.
    1. Willner S., Nilsson K.O., Kastrup K., Bergstrand C.G. Growth hormone and somatomedin A in girls with adolescent idiopathic scoliosis. Acta Paediatr. Scand. 1976;65(5):547–552. doi: 10.1111/j.1651-2227.1976.tb04930.x.
    1. Ahl T., Albertsson-Wikland K., Kalén R. Twenty-four-hour growth hormone profiles in pubertal girls with idiopathic scoliosis. Spine. 1988;13(2):139–142. doi: 10.1097/00007632-198802000-00001.
    1. Misol S., Ponseti I.V., Samaan N., Bradbury J.T. Growth hormone blood levels in patients with AIS. Clin. Orthop. Relat. Res. 1971;(81):122–125. doi: 10.1097/00003086-197111000-00019.
    1. Kulis A., Goździalska A., Drąg J., Jaśkiewicz J., Knapik-Czajka M., Lipik E., Zarzycki D. Participation of sex hormones in multifactorial pathogenesis of adolescent idiopathic scoliosis. Int. Orthop. 2015;39(6):1227–1236. doi: 10.1007/s00264-015-2742-6.
    1. Raczkowski J.W. The concentrations of testosterone and estradiol in girls with adolescent idiopathic scoliosis. Neuroendocrinol. Lett. 2007;28(3):302–304.
    1. Esposito T., Uccello R., Caliendo R., Di Martino G.F., Gironi Carnevale U.A., Cuomo S., Ronca D., Varriale B. Estrogen receptor polymorphism, estrogen content and idiopathic scoliosis in human: A possible genetic linkage. J. Steroid Biochem. Mol. Biol. 2009;116(1-2):56–60. doi: 10.1016/j.jsbmb.2009.04.010.
    1. Pöllänen E., Sipilä S., Alen M., Ronkainen P.H., Ankarberg-Lindgren C., Puolakka J., Suominen H., Hämäläinen E., Turpeinen U., Konttinen Y.T., Kovanen V. Differential influence of peripheral and systemic sex steroids on skeletal muscle quality in pre- and postmenopausal women. Aging Cell. 2011;10(4):650–660. doi: 10.1111/j.1474-9726.2011.00701.x.
    1. Rusin B., Kotwicki T., Głodek A., Andrusiewicz M., Urbaniak P., Kotwicka M. Estrogen receptor 2 expression in back muscles of girls with idiopathic scoliosis - relation to radiological parameters. Stud. Health Technol. Inform. 2012;176:59–62.

Source: PubMed

3
Prenumerera