Temporomandibular disorders: the habitual chewing side syndrome

Urbano Santana-Mora, José López-Cedrún, María J Mora, Xosé L Otero, Urbano Santana-Penín, Urbano Santana-Mora, José López-Cedrún, María J Mora, Xosé L Otero, Urbano Santana-Penín

Abstract

Background: Temporomandibular disorders are the most common cause of chronic orofacial pain, but, except where they occur subsequent to trauma, their cause remains unknown. This cross-sectional study assessed chewing function (habitual chewing side) and the differences of the chewing side and condylar path and lateral anterior guidance angles in participants with chronic unilateral temporomandibular disorder. This is the preliminary report of a randomized trial that aimed to test the effect of a new occlusal adjustment therapy.

Methods: The masticatory function of 21 randomly selected completely dentate participants with chronic temporomandibular disorders (all but one with unilateral symptoms) was assessed by observing them eat almonds, inspecting the lateral horizontal movement of the jaw, with kinesiography, and by means of interview. The condylar path in the sagittal plane and the lateral anterior guidance angles with respect to the Frankfort horizontal plane in the frontal plane were measured on both sides in each individual.

Results: Sixteen of 20 participants with unilateral symptoms chewed on the affected side; the concordance (Fisher's exact test, P = .003) and the concordance-symmetry level (Kappa coefficient κ = 0.689; 95% confidence interval [CI], 0.38 to 0.99; P = .002) were significant. The mean condylar path angle was steeper (53.47(10.88) degrees versus 46.16(7.25) degrees; P = .001), and the mean lateral anterior guidance angle was flatter (41.63(13.35) degrees versus 48.32(9.53) degrees P = .036) on the symptomatic side.

Discussion: The results of this study support the use of a new term based on etiology, "habitual chewing side syndrome", instead of the nonspecific symptom-based "temporomandibular joint disorders"; this denomination is characterized in adults by a steeper condylar path, flatter lateral anterior guidance, and habitual chewing on the symptomatic side.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Axiography procedure: condylar path tracings.
Figure 1. Axiography procedure: condylar path tracings.
A, the kinematic face-bow attached with silicone putty to mandibular teeth through an occlusal rim; lateral condylar path drawn on the surface of the recording card. B, parasagittal plane of lateral condylar path tracings and their angle with respect to the tragus-infraorbital Frankfort plane.
Figure 2. Gnathography procedure.
Figure 2. Gnathography procedure.
A, The face-bow placed on the patient’s head and the magnet attached to the buccal surface of the mandibular incisors. B, lateral anterior dental guidance tracings and the right angle with respect to the bimeatus-horizontal plane.
Figure 3. Craniomandibular relationships of a patient…
Figure 3. Craniomandibular relationships of a patient with left-side symptoms.
A, Maximal intercuspal position. B, Right lateral jaw motion. C, Left lateral jaw motion. Left lateral jaw motion is more horizontal than right lateral jaw motion (α>α’ and/or β>β’).

References

    1. De Leeuw R (2008) Orofacial Pain: Guidelines for Assessment, Diagnosis, and Management. 4350 Chandler Drive; Hanover Park, IL 60133: Quintessence publishing Co, Inc.
    1. Diatchenko L, Slade GD, Nackley AG, Bhalang K, Sigurdsson A, et al. (2005) Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum Mol Genet 14: 135–143.
    1. Tanaka E, Detamore MS, Mercuri LG (2008) Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. J Dent Res 87: 296–307.
    1. Nitzan DW (2001) The process of lubrication impairment and its involvement in temporomandibular joint disc displacement: a theoretical concept. J Oral Maxillofac Surg 59: 36–45.
    1. Koolstra JH, van Eijden TM, Weijs WA, Naeije M (1988) A three-dimensional mathematical model of the human masticatory system predicting maximum possible bite forces. J Biomech 21: 563–576.
    1. del Palomar AP, Santana-Penin U, Mora-Bermudez MJ, Doblare M (2008) Clenching TMJs-loads increases in partial edentates: a 3D finite element study. Ann Biomed Eng 36: 1014–1023.
    1. Hylander WL (1979) Experimental analysis of temporomandibular joint reaction force in macaques. Am J Phys Anthropol 51: 433–456.
    1. Smith DM, McLachlan KR, McCall WD Jr (1986) A numerical model of temporomandibular joint loading. Journal of Dental Research 65 (8) (Aug): 1046–52.
    1. Smartt JM Jr, Low DW, Bartlett SP (2005) The pediatric mandible: I. A primer on growth and development. Plastic and Reconstructive Surgery 116 (1) (Jul): 14e–23e.
    1. Ren YF, Isberg A, Westesson PL (1995) Steepness of the articular eminence in the temporomandibular joint. Tomographic comparison between asymptomatic volunteers with normal disk position and patients with disk displacement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 80: 258–266.
    1. Poikela A, Kantomaa T, Pirttiniemi P (1997) Craniofacial growth after a period of unilateral masticatory function in young rabbits. Eur J Oral Sci 105: 331–337.
    1. Hinton RJ (1981) Changes in articular eminence morphology with dental function. Am J Phys Anthropol 54: 439–455.
    1. Rios HF, Ma D, Xie Y, Giannobile WV, Bonewald LF, et al. (2008) Periostin is essential for the integrity and function of the periodontal ligament during occlusal loading in mice. J Periodontol 79: 1480–1490.
    1. Hoogmartens MJ, Caubergh MA, De Geest M (1987) Occlusal, articular and temporomandibular joint dysfunction parameters versus chewing preference during the first chewing cycle. Electromyogr Clin Neurophysiol 27: 7–11.
    1. Pond LH, Barghi N, Barnwell GM (1986) Occlusion and chewing side preference. J Prosthet Dent 55: 498–500.
    1. Miyawaki S, Tanimoto Y, Kawakami T, Sugimura M, Takano-Yamamoto T (2001) Motion of the human mandibular condyle during mastication. J Dent Res 80: 437–442.
    1. Ferrario VF, Sforza C, Sigurta D, Dalloca LL (1996) Temporomandibular joint dysfunction and flat lateral guidances: a clinical association. J Prosthet Dent 75: 534–539.
    1. Pullinger AG, Seligman DA, Gornbein JA (1993) A multiple logistic regression analysis of the risk and relative odds of temporomandibular disorders as a function of common occlusal features. J Dent Res 72: 968–979.
    1. Szentpetery A, Fazekas A, Mari A (1987) An epidemiologic study of mandibular dysfunction dependence on different variables. Community Dent Oral Epidemiol 15: 164–168.
    1. Reinhardt R, Tremel T, Wehrbein H, Reinhardt W (2006) The unilateral chewing phenomenon, occlusion, and TMD. Cranio 24: 166–170.
    1. Diernberger S, Bernhardt O, Schwahn C, Kordass B (2008) Self-reported chewing side preference and its associations with occlusal, temporomandibular and prosthodontic factors: results from the population-based Study of Health in Pomerania (SHIP-0). J Oral Rehabil 35: 613–620.
    1. de Wijer A, Lobbezoo-Scholte AM, Steenks MH, Bosman F (1995) Reliability of clinical findings in temporomandibular disorders. J Orofac Pain 9: 181–191.
    1. Dworkin SF, LeResche L (1992) Research diagnostic criteria for temporomandibular disorders: review, criteria, examinations and specifications, critique. J Craniomandib Disord 6: 301–355.
    1. Huskisson EC (1974) Measurement of pain. Lancet 2: 1127–1131.
    1. Hildebrand Y (1936) Studies in mandibular kinematics. Dental Cosmos 78 Issue 5: 449–458.
    1. Varela JM, Castro NB, Biedma BM, Da Silva Domínguez JL, Quintanilla JS, et al. (2003) A comparison of the methods used to determine chewing preference. J Oral Rehabil 30: 990–994.
    1. Shinagawa H, Ono T, Ishiwata Y, Honda E, Sasaki T, et al. (2003) Hemispheric dominance of tongue control depends on the chewing-side preference. J Dent Res 82: 278–283.
    1. Gysi A, Wayne OT (1910) The problem of articulation. Dental Cosmos 52: 403–410.
    1. Preti G, Scotti R, Bruscagin C, Carossa S (1982) A clinical study of graphic registration of the condylar path inclination. J Prosthet Dent 48: 461–466.
    1. Cantor AB (1996) Sample-size calculations for Cohen’s Kappa. Psych Methods 1: 150–153.
    1. Bernhardt O, Biffar R, Kocher T, Meyer G (2007) Prevalence and clinical signs of degenerative temporomandibular joint changes validated by magnetic resonance imaging in a non-patient group. Ann Anat 189: 342–346.

Source: PubMed

3
Prenumerera