Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system

Nisarg R Desai, Kavindra K Kesari, Ashok Agarwal, Nisarg R Desai, Kavindra K Kesari, Ashok Agarwal

Abstract

Hazardous health effects stemming from exposure to radiofrequency electromagnetic waves (RF-EMW) emitted from cell phones have been reported in the literature. However, the cellular target of RF-EMW is still controversial. This review identifies the plasma membrane as a target of RF-EMW. In addition, the effects of RF-EMW on plasma membrane structures (i.e. NADH oxidase, phosphatidylserine, ornithine decarboxylase) and voltage-gated calcium channels are discussed. We explore the disturbance in reactive oxygen species (ROS) metabolism caused by RF-EMW and delineate NADH oxidase mediated ROS formation as playing a central role in oxidative stress (OS) due to cell phone radiation (with a focus on the male reproductive system). This review also addresses: 1) the controversial effects of RF-EMW on mammalian cells and sperm DNA as well as its effect on apoptosis, 2) epidemiological, in vivo animal and in vitro studies on the effect of RF-EMW on male reproductive system, and 3) finally, exposure assessment and dosimetry by computational biomodeling.

Figures

Figure 1
Figure 1
The figure shows various cellular targets of radiofrequency electromagnetic waves (RF-EMW). Acute (short term) exposure to RF-EMW can stimulate plasma membrane NADH oxidase which can increase reactive oxygen species (ROS) formation. Increase in ROS can stimulate endothelial growth factor (EGF) receptor which in turn activates extra cellular signal regulated kinase (ERK) pathway. ERK pathway consist of subsequent activation of Ras, Raf proteins and mitogen-activated protein kinase (MAPK). MAPK pathway has tumor promoting role. Chronic exposure to ROS can activate various stress kinase (p38 MAP kinase). Activation of p38 MAP kinase can stimulate ERK pathway and also lead to phosphorylation of heat shock proteins (Hsp) which inhibits apoptosis. Inhibition of apoptosis might promote carcinogenesis by prolonging survival of cell with damaged DNA. Hsp also stabilizes endothelial stress fiber and alters secretion of bFGF. This can lead to increase in permeability of blood testis barrier and causes infertility. RF-EMW can also promote cancer by stimulating ornithine decarboxylase (ODC), a rate limiting enzyme in polyamine synthesis pathway as well as by interfering with plasma membrane calcium channels.

References

    1. World Health Organization (WHO) 2006 WHO research agenda for radio frequency fields. 2006.
    1. Makker K, Varghese A, Desai NR, Mouradi R, Agarwal A. Cell phones: modern man's nemesis? Reprod Biomed Online. 2009;18:148–157.
    1. Oftedal G, Wilen J, Sandstrom M, Mild KH. Symptoms experienced in connection with mobile phone use. Occup Med (Lond) 2000;50:237–245.
    1. International Commission on Non-Ionizing Radiation Protection (ICNIRP) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys. 1998;74:494–522.
    1. Anderson V, Rowley J. Measurements of skin surface temperature during mobile phone use. Bioelectromagnetics. 2007;28:159–162. doi: 10.1002/bem.20282.
    1. Straume A, Oftedal G, Johnsson A. Skin temperature increase caused by a mobile phone: a methodological infrared camera study. Bioelectromagnetics. 2005;26:510–519. doi: 10.1002/bem.20124.
    1. Yan JG, Agresti M, Bruce T, Yan YH, Granlund A, Matloub HS. Effects of cellular phone emissions on sperm motility in rats. Fertil Steril. 2007;88:957–964. doi: 10.1016/j.fertnstert.2006.12.022.
    1. Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J. 2007;405:559–568. doi: 10.1042/BJ20061653.
    1. Leszczynski D, Joenvaara S, Reivinen J, Kuokka R. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation. 2002;70:120–129. doi: 10.1046/j.1432-0436.2002.700207.x.
    1. Blank M. Do electromagnetic fields interact with electrons in the Na, K-ATPase? Bioelectromagnetics. 2005;26:677–683. doi: 10.1002/bem.20167.
    1. Capri M, Scarcella E, Fumelli C, Bianchi E, Salvioli S, Mesirca P, Agostini C, Antolini A, Schiavoni A, Castellani G, Bersani F, Franceschi C. In vitro exposure of human lymphocytes to 900 MHz CW and GSM modulated radiofrequency: studies of proliferation, apoptosis and mitochondrial membrane potential. Radiat Res. 2004;162:211–218. doi: 10.1667/RR3209.
    1. Cleary SF, Du Z, Cao G, Liu LM, McCrady C. Effect of isothermal radiofrequency radiation on cytolytic T lymphocytes. FASEB J. 1996;10:913–919.
    1. Lai H, Singh NP. Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int J Radiat Biol. 1996;69:513–521. doi: 10.1080/095530096145814.
    1. Lantow M, Lupke M, Frahm J, Mattsson MO, Kuster N, Simko M. ROS release and Hsp70 expression after exposure to 1,800 MHz radiofrequency electromagnetic fields in primary human monocytes and lymphocytes. Radiat Environ Biophys. 2006;45:55–62. doi: 10.1007/s00411-006-0038-3.
    1. Lixia S, Yao K, Kaijun W, Deqiang L, Huajun H, Xiangwei G, Baohong W, Wei Z, Jianling L, Wei W. Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. Mutat Res. 2006;602:135–142.
    1. McNamee JP, Bellier PV, Gajda GB, Lavallee BF, Marro L, Lemay E, Thansandote A. No evidence for genotoxic effects from 24 h exposure of human leukocytes to 1.9 GHz radiofrequency fields. Radiat Res. 2003;159:693–697. doi: 10.1667/0033-7587(2003)159[0693:NEFGEF];2.
    1. Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, Il'yasova D, Kruchko C, McCarthy BJ, Rajaraman P, Schwartzbaum JA, Sadetzki S, Schlehofer B, Tihan T, Wiemels JL, Wrensch M, Buffler PA. Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer. 2008;113:1953–1968.
    1. Cardis E, Deltour I, Mann S, Moissonnier M, Taki M, Varsier N, Wake K, Wiart J. Distribution of RF energy emitted by mobile phones in anatomical structures of the brain. Phys Med Biol. 2008;53:2771–2783. doi: 10.1088/0031-9155/53/11/001.
    1. Eberhardt JL, Persson BR, Brun AE, Salford LG, Malmgren LO. Blood-brain barrier permeability and nerve cell damage in rat brain 14 and 28 days after exposure to microwaves from GSM mobile phones. Electromagn Biol Med. 2008;27:215–229. doi: 10.1080/15368370802344037.
    1. Hardell L, Sage C. Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother. 2008;62:104–109. doi: 10.1016/j.biopha.2007.12.004.
    1. O'Keefe S. Does the use of cell phones cause brain tumors? Clin J Oncol Nurs. 2008;12:671–672. doi: 10.1188/08.CJON.671-672.
    1. Pawl R. Cell phones more dangerous than cigarettes! Surg Neurol. 2008;70:445–446. doi: 10.1016/j.surneu.2008.07.009.
    1. Sokolovic D, Djindjic B, Nikolic J, Bjelakovic G, Pavlovic D, Kocic G, Krstic D, Cvetkovic T, Pavlovic V. Melatonin reduces oxidative stress induced by chronic exposure of microwave radiation from mobile phones in rat brain. J Radiat Res (Tokyo) 2008;49:579–586. doi: 10.1269/jrr.07077.
    1. Wiholm C, Lowden A, Kuster N, Hillert L, Arnetz BB, Akerstedt T, Moffat SD. Mobile phone exposure and spatial memory. Bioelectromagnetics. 2009;30:59–65. doi: 10.1002/bem.20443.
    1. Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008;89:124–128. doi: 10.1016/j.fertnstert.2007.01.166.
    1. Markkanen A, Penttinen P, Naarala J, Pelkonen J, Sihvonen AP, Juutilainen J. Apoptosis induced by ultraviolet radiation is enhanced by amplitude modulated radiofrequency radiation in mutant yeast cells. Bioelectromagnetics. 2004;25:127–133. doi: 10.1002/bem.10167.
    1. Buttiglione M, Roca L, Montemurno E, Vitiello F, Capozzi V, Cibelli G. Radiofrequency radiation (900 MHz) induces Egr-1 gene expression and affects cell-cycle control in human neuroblastoma cells. J Cell Physiol. 2007;213:759–767. doi: 10.1002/jcp.21146.
    1. Dasdag S, Akdag MZ, Ulukaya E, Uzunlar AK, Yegin D. Mobile phone exposure does not induce apoptosis on spermatogenesis in rats. Arch Med Res. 2008;39:40–44. doi: 10.1016/j.arcmed.2007.06.013.
    1. Hook GJ, Zhang P, Lagroye I, Li L, Higashikubo R, Moros EG, Straube WL, Pickard WF, Baty JD, Roti Roti JL. Measurement of DNA damage and apoptosis in Molt-4 cells after in vitro exposure to radiofrequency radiation. Radiat Res. 2004;161:193–200. doi: 10.1667/RR3127.
    1. Joubert V, Leveque P, Cueille M, Bourthoumieu S, Yardin C. No apoptosis is induced in rat cortical neurons exposed to GSM phone fields. Bioelectromagnetics. 2007;28:115–121. doi: 10.1002/bem.20274.
    1. Joubert V, Leveque P, Rametti A, Collin A, Bourthoumieu S, Yardin C. Microwave exposure of neuronal cells in vitro: Study of apoptosis. Int J Radiat Biol. 2006;82:267–275. doi: 10.1080/09553000600649232.
    1. Lantow M, Viergutz T, Weiss DG, Simko M. Comparative study of cell cycle kinetics and induction of apoptosis or necrosis after exposure of human mono mac 6 cells to radiofrequency radiation. Radiat Res. 2006;166:539–543. doi: 10.1667/RR3601.1.
    1. Merola P, Marino C, Lovisolo GA, Pinto R, Laconi C, Negroni A. Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field. Bioelectromagnetics. 2006;27:164–171. doi: 10.1002/bem.20201.
    1. Falzone N, Huyser C, Fourie F, Toivo T, Leszczynski D, Franken D. In vitro effect of pulsed 900 MHz GSM radiation on mitochondrial membrane potential and motility of human spermatozoa. Bioelectromagnetics. 2008;29:268–276. doi: 10.1002/bem.20390.
    1. Rao VS, Titushkin IA, Moros EG, Pickard WF, Thatte HS, Cho MR. Nonthermal effects of radiofrequency-field exposure on calcium dynamics in stem cell-derived neuronal cells: elucidation of calcium pathways. Radiat Res. 2008;169:319–329. doi: 10.1667/RR1118.1.
    1. Desai N, Sharma R, Makker K, Sabanegh E, Agarwal A. Physiologic and pathologic levels of reactive oxygen species in neat semen of infertile men. Fertil Steril. 2008.
    1. Grundler W, Kaiser F, Keilmann F, Walleczek J. Mechanisms of electromagnetic interaction with cellular systems. Naturwissenschaften. 1992;79:551–559. doi: 10.1007/BF01131411.
    1. Balci M, Devrim E, Durak I. Effects of mobile phones on oxidant/antioxidant balance in cornea and lens of rats. Curr Eye Res. 2007;32:21–25. doi: 10.1080/02713680601114948.
    1. Meral I, Mert H, Mert N, Deger Y, Yoruk I, Yetkin A, Keskin S. Effects of 900-MHz electromagnetic field emitted from cellular phone on brain oxidative stress and some vitamin levels of guinea pigs. Brain Res. 2007;1169:120–124. doi: 10.1016/j.brainres.2007.07.015.
    1. Oktem F, Ozguner F, Mollaoglu H, Koyu A, Uz E. Oxidative damage in the kidney induced by 900-MHz-emitted mobile phone: protection by melatonin. Arch Med Res. 2005;36:350–355. doi: 10.1016/j.arcmed.2005.03.021.
    1. Oral B, Guney M, Ozguner F, Karahan N, Mungan T, Comlekci S, Cesur G. Endometrial apoptosis induced by a 900-MHz mobile phone: preventive effects of vitamins E and C. Adv Ther. 2006;23:957–973. doi: 10.1007/BF02850217.
    1. Ozguner F, Bardak Y, Comlekci S. Protective effects of melatonin and caffeic acid phenethyl ester against retinal oxidative stress in long-term use of mobile phone: a comparative study. Mol Cell Biochem. 2006;282:83–88. doi: 10.1007/s11010-006-1267-0.
    1. Dasdag S, Ketani MA, Akdag Z, Ersay AR, Sari I, Demirtas OC, Celik MS. Whole-body microwave exposure emitted by cellular phones and testicular function of rats. Urol Res. 1999;27:219–223. doi: 10.1007/s002400050113.
    1. Dasdag S, Zulkuf Akdag M, Aksen F, Yilmaz F, Bashan M, Mutlu Dasdag M, Salih Celik M. Whole body exposure of rats to microwaves emitted from a cell phone does not affect the testes. Bioelectromagnetics. 2003;24:182–188. doi: 10.1002/bem.10083.
    1. Ribeiro EP, Rhoden EL, Horn MM, Rhoden C, Lima LP, Toniolo L. Effects of subchronic exposure to radio frequency from a conventional cellular telephone on testicular function in adult rats. J Urol. 2007;177:395–399. doi: 10.1016/j.juro.2006.08.083.
    1. Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, Sharma R. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2008;92:1318–25. doi: 10.1016/j.fertnstert.2008.08.022. Epub 2008 Sep 20.
    1. De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One. 2009;4:e6446. doi: 10.1371/journal.pone.0006446.
    1. Garaj-Vrhovac V, Horvat D, Koren Z. The effect of microwave radiation on the cell genome. Mutat Res. 1990;243:87–93. doi: 10.1016/0165-7992(90)90028-I.
    1. Maes A, Verschaeve L, Arroyo A, De Wagter C, Vercruyssen L. In vitro cytogenetic effects of 2450 MHz waves on human peripheral blood lymphocytes. Bioelectromagnetics. 1993;14:495–501. doi: 10.1002/bem.2250140602.
    1. Sarkar S, Ali S, Behari J. Effect of low power microwave on the mouse genome: a direct DNA analysis. Mutat Res. 1994;320:141–147. doi: 10.1016/0165-1218(94)90066-3.
    1. Belyaev IY, Koch CB, Terenius O, Roxstrom-Lindquist K, Malmgren LO, W HS, Salford LG, Persson BR. Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics. 2006;27:295–306. doi: 10.1002/bem.20216.
    1. Lai H, Singh NP. Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics. 1995;16:207–210. doi: 10.1002/bem.2250160309.
    1. Lai H, Singh NP. Acute exposure to a 60 Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics. 1997;18:156–165. doi: 10.1002/(SICI)1521-186X(1997)18:2<156::AID-BEM8>;2-1.
    1. Lai H, Singh NP. Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect. 2004;112:687–694.
    1. Lai H, Singh NP. Melatonin and N-tert-butyl-alpha-phenylnitrone block 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. J Pineal Res. 1997;22:152–162. doi: 10.1111/j.1600-079X.1997.tb00317.x.
    1. Paulraj R, Behari J. Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat Res. 2006;596:76–80.
    1. Nikolova T, Czyz J, Rolletschek A, Blyszczuk P, Fuchs J, Jovtchev G, Schuderer J, Kuster N, Wobus AM. Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. FASEB J. 2005;19:1686–1688.
    1. Aitken RJ, Bennetts LE, Sawyer D, Wiklendt AM, King BV. Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. Int J Androl. 2005;28:171–179. doi: 10.1111/j.1365-2605.2005.00531.x.
    1. Diem E, Schwarz C, Adlkofer F, Jahn O, Rudiger H. Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res. 2005;583:178–183.
    1. Tice RR, Hook GG, Donner M, McRee DI, Guy AW. Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells. Bioelectromagnetics. 2002;23:113–126. doi: 10.1002/bem.104.
    1. Vijayalaxmi , Prihoda TJ. Genetic damage in mammalian somatic cells exposed to radiofrequency radiation: a meta-analysis of data from 63 publications (1990-2005) Radiat Res. 2008;169:561–574. doi: 10.1667/RR0987.1.
    1. Remondini D, Nylund R, Reivinen J, Poulletier de Gannes F, Veyret B, Lagroye I, Haro E, Trillo MA, Capri M, Franceschi C, Schlatterer K, Gminski R, Fitzner R, Tauber R, Schuderer J, Kuster N, Leszczynski D, Bersani F, Maercker C. Gene expression changes in human cells after exposure to mobile phone microwaves. Proteomics. 2006;6:4745–4754. doi: 10.1002/pmic.200500896.
    1. Schwarz C, Kratochvil E, Pilger A, Kuster N, Adlkofer F, Rudiger HW. Radiofrequency electromagnetic fields (UMTS, 1,950 MHz) induce genotoxic effects in vitro in human fibroblasts but not in lymphocytes. Int Arch Occup Environ Health. 2008;81:755–767. doi: 10.1007/s00420-008-0305-5.
    1. Sannino A, Di Costanzo G, Brescia F, Sarti M, Zeni O, Juutilainen J, Scarfi MR. Human fibroblasts and 900 MHz radiofrequency radiation: evaluation of DNA damage after exposure and co-exposure to 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5 h)-furanone (MX) Radiat Res. 2009;171:743–751. doi: 10.1667/RR1642.1.
    1. Huang TQ, Lee MS, Oh E, Zhang BT, Seo JS, Park WY. Molecular responses of Jurkat T-cells to 1763 MHz radiofrequency radiation. Int J Radiat Biol. 2008;84:734–741. doi: 10.1080/09553000802317760.
    1. Verschaeve L. Genetic damage in subjects exposed to radiofrequency radiation. Mutat Res. 2009;681:259–270. doi: 10.1016/j.mrrev.2008.11.002.
    1. Zhao TY, Zou SP, Knapp PE. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci Lett. 2007;412:34–38. doi: 10.1016/j.neulet.2006.09.092.
    1. Baste V, Riise T, Moen BE. Radiofrequency electromagnetic fields; male infertility and sex ratio of offspring. Eur J Epidemiol. 2008;23:369–77. doi: 10.1007/s10654-008-9236-4.
    1. Wdowiak A, Wdowiak L, Wiktor H. Evaluation of the effect of using mobile phones on male fertility. Ann Agric Environ Med. 2007;14:169–172.
    1. Fejes I, Zavaczki Z, Szollosi J, Koloszar S, Daru J, Kovacs L, Pal A. Is there a relationship between cell phone use and semen quality? Arch Androl. 2005;51:385–393. doi: 10.1080/014850190924520.
    1. Davoudi M, Brossner C, Kuber W. The influence of electromagnetic waves on sperm motility. Urol Urogynacol. 2002;19
    1. Ozguner M, Koyu A, Cesur G, Ural M, Ozguner F, Gokcimen A, Delibas N. Biological and morphological effects on the reproductive organ of rats after exposure to electromagnetic field. Saudi Med J. 2005;26:405–410.
    1. Saunders RD, Kowalczuk CI. Effects of 2.45 GHz microwave radiation and heat on mouse spermatogenic epithelium. Int J Radiat Biol Relat Stud Phys Chem Med. 1981;40:623–632. doi: 10.1080/09553008114551611.
    1. Wang XW, Ding GR, Shi CH, Zhao T, Zhang J, Zeng LH, Guo GZ. Effect of electromagnetic pulse exposure on permeability of blood-testicle barrier in mice. Biomed Environ Sci. 2008;21:218–221. doi: 10.1016/S0895-3988(08)60032-X.
    1. Cairnie AB, Harding RK. Cytological studies in mouse testis irradiated with 2.45-GHz continuous-wave microwaves. Radiat Res. 1981;87:100–108. doi: 10.2307/3575544.
    1. Erogul O, Oztas E, Yildirim I, Kir T, Aydur E, Komesli G, Irkilata HC, Irmak MK, Peker AF. Effects of electromagnetic radiation from a cellular phone on human sperm motility: an in vitro study. Arch Med Res. 2006;37:840–843. doi: 10.1016/j.arcmed.2006.05.003.
    1. Larsson C. New insights into PKC family affairs: three novel phosphorylation sites in PKCepsilon and at least one is regulated by PKCalpha. Biochem J. 2008;411:e15–16. doi: 10.1042/BJ20080373.
    1. Kimura K, Katoh N, Sakurada K, Kubo S. Phospholipid-sensitive Ca2+-dependent protein kinase system in testis: localization and endogenous substrates. Endocrinology. 1984;115:2391–2399. doi: 10.1210/endo-115-6-2391.
    1. Naor Z, Breitbart H. Protein kinase C and Mammalian spermatozoa acrosome reaction. Trends Endocrinol Metab. 1997;8:337–342. doi: 10.1016/S1043-2760(97)00134-3.
    1. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986;233:305–312. doi: 10.1126/science.3014651.
    1. Nikula H, Naor Z, Parvinen M, Huhtaniemi I. Distribution and activation of protein kinase C in the rat testis tissue. Mol Cell Endocrinol. 1987;49:39–49. doi: 10.1016/0303-7207(87)90062-1.
    1. Crocenzi FA, Sanchez Pozzi EJ, Ruiz ML, Zucchetti AE, Roma MG, Mottino AD, Vore M. Ca(2+)-dependent protein kinase C isoforms are critical to estradiol 17beta-D-glucuronide-induced cholestasis in the rat. Hepatology. 2008;48:1885–1895. doi: 10.1002/hep.22532.
    1. Kubitz R, Saha N, Kuhlkamp T, Dutta S, vom Dahl S, Wettstein M, Haussinger D. Ca2+-dependent protein kinase C isoforms induce cholestasis in rat liver. J Biol Chem. 2004;279:10323–10330. doi: 10.1074/jbc.M306242200.
    1. White D, de Lamirande E, Gagnon C. Protein kinase C is an important signaling mediator associated with motility of intact sea urchin spermatozoa. J Exp Biol. 2007;210:4053–4064. doi: 10.1242/jeb.007013.
    1. Hornia A, Lu Z, Sukezane T, Zhong M, Joseph T, Frankel P, Foster DA. Antagonistic effects of protein kinase C alpha and delta on both transformation and phospholipase D activity mediated by the epidermal growth factor receptor. Mol Cell Biol. 1999;19:7672–7680.
    1. Lu Z, Hornia A, Jiang YW, Zang Q, Ohno S, Foster DA. Tumor promotion by depleting cells of protein kinase C delta. Mol Cell Biol. 1997;17:3418–3428.
    1. Blackman CF, Benane SG, Elder JA, House DE, Lampe JA, Faulk JM. Induction of calcium-ion efflux from brain tissue by radiofrequency radiation: effect of sample number and modulation frequency on the power-density window. Bioelectromagnetics. 1980;1:35–43. doi: 10.1002/bem.2250010104.
    1. Ishizuka J, Bold RJ, Townsend CM, Jr, Thompson JC. Role of calcium in the regulation of ornithine decarboxylase enzyme activity in mouse colon cancer cells. Cancer Invest. 1995;13:181–187. doi: 10.3109/07357909509011688.
    1. Fitzsimmons RJ, Strong DD, Mohan S, Baylink DJ. Low-amplitude, low-frequency electric field-stimulated bone cell proliferation may in part be mediated by increased IGF-II release. J Cell Physiol. 1992;150:84–89. doi: 10.1002/jcp.1041500112.
    1. Goodman R, Henderson AS. Exposure of salivary gland cells to low-frequency electromagnetic fields alters polypeptide synthesis. Proc Natl Acad Sci USA. 1988;85:3928–3932. doi: 10.1073/pnas.85.11.3928.
    1. Kundi M, Mild K, Hardell L, Mattsson MO. Mobile telephones and cancer--a review of epidemiological evidence. J Toxicol Environ Health B Crit Rev. 2004;7:351–384. doi: 10.1080/10937400490486258.
    1. Lahkola A, Salminen T, Raitanen J, Heinavaara S, Schoemaker MJ, Christensen HC, Feychting M, Johansen C, Klaeboe L, Lonn S, Swerdlow AJ, Tynes T, Auvinen A. Meningioma and mobile phone use--a collaborative case-control study in five North European countries. Int J Epidemiol. 2008;37:1304–1313. doi: 10.1093/ije/dyn155.
    1. Hoyto A, Juutilainen J, Naarala J. Ornithine decarboxylase activity is affected in primary astrocytes but not in secondary cell lines exposed to 872 MHz RF radiation. Int J Radiat Biol. 2007;83:367–374. doi: 10.1080/09553000701317341.
    1. Behari J, Paulraj R. Biomarkers of induced electromagnetic field and cancer. Indian J Exp Biol. 2007;45:77–85.
    1. Byus CV, Kartun K, Pieper S, Adey WR. Increased ornithine decarboxylase activity in cultured cells exposed to low energy modulated microwave fields and phorbol ester tumor promoters. Cancer Res. 1988;48:4222–4226.
    1. Hogarty MD, Norris MD, Davis K, Liu X, Evageliou NF, Hayes CS, Pawel B, Guo R, Zhao H, Sekyere E, Keating J, Thomas W, Cheng NC, Murray J, Smith J, Sutton R, Venn N, London WB, Buxton A, Gilmour SK, Marshall GM, Haber M. ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma. Cancer Res. 2008;68:9735–9745. doi: 10.1158/0008-5472.CAN-07-6866.
    1. Griner EM, Kazanietz MG. Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer. 2007;7:281–294. doi: 10.1038/nrc2110.
    1. Otieno MA, Kensler TW. A role for protein kinase C-delta in the regulation of ornithine decarboxylase expression by oxidative stress. Cancer Res. 2000;60:4391–4396.
    1. Bit-Babik G, Chou CK, Faraone A, Gessner A, Kanda M, Balzano Q. Estimation of the SAR in the human head and body due to radiofrequency radiation exposure from handheld mobile phones with hands-free accessories. Radiat Res. 2003;159:550–557. doi: 10.1667/0033-7587(2003)159[0550:EOTSIT];2.

Source: PubMed

3
Prenumerera