Characterization of T cell responses to co-administered hookworm vaccine candidates Na-GST-1 and Na-APR-1 in healthy adults in Gabon

Yoanne D Mouwenda, Madeleine E Betouke Ongwe, Friederike Sonnet, Koen A Stam, Lucja A Labuda, Sophie De Vries, Martin P Grobusch, Frejus J Zinsou, Yabo J Honkpehedji, Jean-Claude Dejon Agobe, David J Diemert, Remko van Leeuwen, Maria E Bottazzi, Peter J Hotez, Peter G Kremsner, Jeffrey M Bethony, Simon P Jochems, Ayola A Adegnika, Marguerite Massinga Loembe, Maria Yazdanbakhsh, Yoanne D Mouwenda, Madeleine E Betouke Ongwe, Friederike Sonnet, Koen A Stam, Lucja A Labuda, Sophie De Vries, Martin P Grobusch, Frejus J Zinsou, Yabo J Honkpehedji, Jean-Claude Dejon Agobe, David J Diemert, Remko van Leeuwen, Maria E Bottazzi, Peter J Hotez, Peter G Kremsner, Jeffrey M Bethony, Simon P Jochems, Ayola A Adegnika, Marguerite Massinga Loembe, Maria Yazdanbakhsh

Abstract

Two hookworm vaccine candidates, Na-GST-1 and Na-APR-1, formulated with Glucopyranosyl Lipid A (GLA-AF) adjuvant, have been shown to be safe, well tolerated, and to induce antibody responses in a Phase 1 clinical trial (Clinicaltrials.gov NCT02126462) conducted in Gabon. Here, we characterized T cell responses in 24 Gabonese volunteers randomized to get vaccinated three times with Na-GST-1 and Na-APR-1 at doses of 30μg (n = 8) or 100μg (n = 10) and as control Hepatitis B (n = 6). Blood was collected pre- and post-vaccination on days 0, 28, and 180 as well as 2-weeks after each vaccine dose on days 14, 42, and 194 for PBMCs isolation. PBMCs were stimulated with recombinant Na-GST-1 or Na-APR-1, before (days 0, 28 and 180) and two weeks after (days 14, 42 and 194) each vaccination and used to characterize T cell responses by flow and mass cytometry. A significant increase in Na-GST-1 -specific CD4+ T cells producing IL-2 and TNF, correlated with specific IgG antibody levels, after the third vaccination (day 194) was observed. In contrast, no increase in Na-APR-1 specific T cell responses were induced by the vaccine. Mass cytometry revealed that, Na-GST-1 cytokine producing CD4+ T cells were CD161+ memory cells expressing CTLA-4 and CD40-L. Blocking CTLA-4 enhanced the cytokine response to Na-GST-1. In Gabonese volunteers, hookworm vaccine candidate, Na-GST-1, induces detectable CD4+ T cell responses that correlate with specific antibody levels. As these CD4+ T cells express CTLA-4, and blocking this inhibitory molecules resulted in enhanced cytokine production, the question arises whether this pathway can be targeted to enhance vaccine immunogenicity.

Conflict of interest statement

no authors have competing interests.

Figures

Fig 1. Vaccination and sampling time points.
Fig 1. Vaccination and sampling time points.
Fig 2. Cytokine responses to Na-GST-1 vaccination.
Fig 2. Cytokine responses to Na-GST-1 vaccination.
(A) The frequency of IL-2 and TNF producing CD4+ T cells in response to Na-GST-1 stimulation, over time compared to baseline (day 0), in control (green line), low dose (orange line) and high dose group (blue line), using linear mixed model for statistical analysis. Cells producing cytokines are expressed as percentage of CD4+ T cells. The mean and standard deviation of cytokine producing cells is given for each time point and each vaccine group. (B) Frequency of CD4+ T cells producing IL-2 or TNF alone or together in response to Na-GST-1 on day 0 and day 194, in the high dose (100 μg) group. Data are presented as boxplots representing the median, 1st and 3rd quantile. Whiskers are extending to the maximum/minimum, no further than 1.5x the IQR (interquartile range). Wilcoxon one-tailed paired test was performed for comparison between day 0 and day 194. (C) Correlation between the change induced by vaccination in Na-GST-1 specific IgG antibody levels and the frequency of TNF producing CD4+ T cells, in the high dose group (Spearman correlation test rho = 0.83, p = 0.003). The change in IgG and cytokine producing cells was determine by subtracting the baseline value (day 0) from day 194 value. The antibody levels are given as arbitrary unit (AU). The frequency of cytokine producing cells in (A), (B) and (C) was determined as percentage of total number of CD4+ T cell. (*) indicates the significance p≤0.05 in (A) and (B).
Fig 3. Na-GST-1 specific cell phenotype.
Fig 3. Na-GST-1 specific cell phenotype.
(A) HSNE embedding of 1.1 million CD4+ T cells at day 194 in Na-GST-1 high dose (100 μg) recipients (n = 3), depicting 5 subsets. The colour represents arcsin5- transformed expression values of indicated markers. (B) Heatmap summarizing the median expression of markers present on identified clusters of CD4+ CD161+ T cell subset (subset 5). The colours are the same as for the HSNE plots in A. (C) Bar plots depicting the frequency of clusters producing cytokines relative to CD4+ CD161+ T cells. (D) Cluster partitioning of CD4+ CD161+ T cells and HSNE plots highlighting cluster 15, which has an increased expression of both CD40-L and CTLA-4.
Fig 4. Antigen specific cytokine production following…
Fig 4. Antigen specific cytokine production following blocking of CTLA-4.
Analysis of TNF production in response to Na-GST-1 in cells treated with anti-CTLA-4. Data are presented as boxplots showing the median and IQR. Whiskers are extending to the maximum/minimum, no further than 1.5x the IQR. Individual values are shown as points. The change in TNF production in response to Na-GST-1 was determine by subtracting baseline (day 0) value from day 194 value when either medium, control IgG or anti CTLA-4 was used. A significant increase in TNF production was observed after CTLA-4 blocking compared to IgG isotype or medium control. Statistical significance was determined using Kruskal Wallis test. (*) indicates the significance p≤0.05.

References

    1. Hotez PJ, Brooker S, Bethony JM, Bottazzi ME, Loukas A, Xiao S. Hookworm infection. The New England journal of medicine. 2004;351(8):799–807. Epub 2004/08/20. doi: 10.1056/NEJMra032492 .
    1. Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa-Oliveira R, et al.. Hookworm infection. Nature reviews Disease primers. 2016;2:16088. Epub 2016/12/09. doi: 10.1038/nrdp.2016.88.
    1. Brooker S, Bethony J, Hotez PJ. Human hookworm infection in the 21st century. Advances in parasitology. 2004;58:197–288. Epub 2004/12/18. doi: 10.1016/S0065-308X(04)58004-1 ; PubMed Central PMCID: PMC2268732.
    1. Flohr C, Tuyen LN, Lewis S, Minh TT, Campbell J, Britton J, et al.. Low efficacy of mebendazole against hookworm in Vietnam: two randomized controlled trials. The American journal of tropical medicine and hygiene. 2007;76(4):732–6. Epub 2007/04/12. .
    1. Soukhathammavong PA, Sayasone S, Phongluxa K, Xayaseng V, Utzinger J, Vounatsou P, et al.. Low efficacy of single-dose albendazole and mebendazole against hookworm and effect on concomitant helminth infection in Lao PDR. PLoS neglected tropical diseases. 2012;6(1):e1417. Epub 2012/01/12. doi: 10.1371/journal.pntd.0001417; PubMed Central PMCID: PMC3250499.
    1. Hotez PJ, Bethony JM, Diemert DJ, Pearson M, Loukas A. Developing vaccines to combat hookworm infection and intestinal schistosomiasis. Nature reviews Microbiology. 2010;8(11):814–26. Epub 2010/10/16. doi: 10.1038/nrmicro2438 .
    1. Mendez S, Zhan B, Goud G, Ghosh K, Dobardzic A, Wu W, et al.. Effect of combining the larval antigens Ancylostoma secreted protein 2 (ASP-2) and metalloprotease 1 (MTP-1) in protecting hamsters against hookworm infection and disease caused by Ancylostoma ceylanicum. Vaccine. 2005;23(24):3123–30. Epub 2005/04/20. doi: 10.1016/j.vaccine.2004.12.022 .
    1. Bethony J, Loukas A, Smout M, Brooker S, Mendez S, Plieskatt J, et al.. Antibodies against a secreted protein from hookworm larvae reduce the intensity of hookworm infection in humans and vaccinated laboratory animals. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2005;19(12):1743–5. Epub 2005/07/23. doi: 10.1096/fj.05-3936fje .
    1. Bethony JM, Simon G, Diemert DJ, Parenti D, Desrosiers A, Schuck S, et al.. Randomized, placebo-controlled, double-blind trial of the Na-ASP-2 hookworm vaccine in unexposed adults. Vaccine. 2008;26(19):2408–17. Epub 2008/04/09. doi: 10.1016/j.vaccine.2008.02.049 .
    1. Diemert DJ, Pinto AG, Freire J, Jariwala A, Santiago H, Hamilton RG, et al.. Generalized urticaria induced by the Na-ASP-2 hookworm vaccine: implications for the development of vaccines against helminths. The Journal of allergy and clinical immunology. 2012;130(1):169–76.e6. Epub 2012/05/29. doi: 10.1016/j.jaci.2012.04.027 .
    1. Ranjit N, Zhan B, Hamilton B, Stenzel D, Lowther J, Pearson M, et al.. Proteolytic degradation of hemoglobin in the intestine of the human hookworm Necator americanus. The Journal of infectious diseases. 2009;199(6):904–12. Epub 2009/05/13. doi: 10.1086/597048 .
    1. Williamson AL, Lecchi P, Turk BE, Choe Y, Hotez PJ, McKerrow JH, et al.. A multi-enzyme cascade of hemoglobin proteolysis in the intestine of blood-feeding hookworms. The Journal of biological chemistry. 2004;279(34):35950–7. Epub 2004/06/17. doi: 10.1074/jbc.M405842200 .
    1. Pearson MS, Bethony JM, Pickering DA, de Oliveira LM, Jariwala A, Santiago H, et al.. An enzymatically inactivated hemoglobinase from Necator americanus induces neutralizing antibodies against multiple hookworm species and protects dogs against heterologous hookworm infection. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2009;23(9):3007–19. Epub 2009/04/22. doi: 10.1096/fj.09-131433 ; PubMed Central PMCID: PMC2735369.
    1. Diemert DJ, Freire J, Valente V, Fraga CG, Talles F, Grahek S, et al.. Safety and immunogenicity of the Na-GST-1 hookworm vaccine in Brazilian and American adults. PLoS neglected tropical diseases. 2017;11(5):e0005574. Epub 2017/05/04. doi: 10.1371/journal.pntd.0005574; PubMed Central PMCID: PMC5441635.
    1. Geiger SM, Caldas IR, Mc Glone BE, Campi-Azevedo AC, De Oliveira LM, Brooker S, et al.. Stage-specific immune responses in human Necator americanus infection. Parasite immunology. 2007;29(7):347–58. Epub 2007/06/20. doi: 10.1111/j.1365-3024.2007.00950.x ; PubMed Central PMCID: PMC1976388.
    1. Maxwell C, Hussain R, Nutman TB, Poindexter RW, Little MD, Schad GA, et al.. The clinical and immunologic responses of normal human volunteers to low dose hookworm (Necator americanus) infection. The American journal of tropical medicine and hygiene. 1987;37(1):126–34. Epub 1987/07/01. doi: 10.4269/ajtmh.1987.37.126 .
    1. Gaze S, Bethony JM, Periago MV. Immunology of experimental and natural human hookworm infection. Parasite immunology. 2014;36(8):358–66. Epub 2014/10/23. doi: 10.1111/pim.12088 .
    1. Ciabattini A, Pettini E, Medaglini D. CD4(+) T Cell Priming as Biomarker to Study Immune Response to Preventive Vaccines. Frontiers in immunology. 2013;4:421. Epub 2013/12/24. doi: 10.3389/fimmu.2013.00421; PubMed Central PMCID: PMC3850413.
    1. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996;383(6603):787–93. Epub 1996/10/31. doi: 10.1038/383787a0 .
    1. Wullner D, Zhou L, Bramhall E, Kuck A, Goletz TJ, Swanson S, et al.. Considerations for optimization and validation of an in vitro PBMC derived T cell assay for immunogenicity prediction of biotherapeutics. Clinical immunology (Orlando, Fla). 2010;137(1):5–14. Epub 2010/08/17. doi: 10.1016/j.clim.2010.06.018 .
    1. Adegnika AA, de Vries SG, Zinsou FJ, Honkepehedji YJ, Dejon Agobe JC, Vodonou KG, et al.. Safety and immunogenicity of co-administered hookworm vaccine candidates Na-GST-1 and Na-APR-1 in Gabonese adults: a randomised, controlled, double-blind, phase 1 dose-escalation trial. Lancet Infect Dis. 2021;21(2):275–85. Epub 2020/09/15. doi: 10.1016/S1473-3099(20)30288-7 .
    1. Jariwala AR, Oliveira LM, Diemert DJ, Keegan B, Plieskatt JL, Periago MV, et al.. Potency testing for the experimental Na-GST-1 hookworm vaccine. Expert Rev Vaccines. 2010;9(10):1219–30. Epub 2010/10/07. doi: 10.1586/erv.10.107 .
    1. Yazdanbakhsh M, Paxton WA, Kruize YC, Sartono E, Kurniawan A, van het Wout A, et al.. T cell responsiveness correlates differentially with antibody isotype levels in clinical and asymptomatic filariasis. The Journal of infectious diseases. 1993;167(4):925–31. Epub 1993/04/01. doi: 10.1093/infdis/167.4.925 .
    1. Pezzotti N, Höllt T, Lelieveldt B, Eisemann E, Vilanova A. Hierarchical Stochastic Neighbor Embedding. Computer Graphics Forum. 2016;35(3):21–30. doi: 10.1111/cgf.12878
    1. van Unen V, Hollt T, Pezzotti N, Li N, Reinders MJT, Eisemann E, et al.. Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types. Nat Commun. 2017;8(1):1740. Epub 2017/11/25. doi: 10.1038/s41467-017-01689-9; PubMed Central PMCID: PMC5700955.
    1. Höllt T, Pezzotti N, van Unen V, Koning F, Eisemann E, Lelieveldt B, et al.. Cytosplore: Interactive Immune Cell Phenotyping for Large Single-Cell Datasets. Computer Graphics Forum. 2016;24. doi: 10.1111/cgf.12893
    1. Bates D. Linear mixed model implementation in lme4. Manuscript, University of Wisconsin. 2007;15.
    1. A language and environment for statistical computing. R Development Core Team; 2008.
    1. Carreno BM, Bennett F, Chau TA, Ling V, Luxenberg D, Jussif J, et al.. CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression. Journal of immunology (Baltimore, Md: 1950). 2000;165(3):1352–6. Epub 2000/07/21. doi: 10.4049/jimmunol.165.3.1352 .
    1. Phetsouphanh C, Zaunders JJ, Kelleher AD. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells. Int J Mol Sci. 2015;16(8):18878–93. Epub 2015/08/15. doi: 10.3390/ijms160818878 ; PubMed Central PMCID: PMC4581277.
    1. Mok DZL, Chan KR. The Effects of Pre-Existing Antibodies on Live-Attenuated Viral Vaccines. Viruses. 2020;12(5). Epub 2020/05/14. doi: 10.3390/v12050520; PubMed Central PMCID: PMC7290594.
    1. Geiger SM, Massara CL, Bethony J, Soboslay PT, Correa-Oliveira R. Cellular responses and cytokine production in post-treatment hookworm patients from an endemic area in Brazil. Clin Exp Immunol. 2004;136(2):334–40. Epub 2004/04/17. doi: 10.1111/j.1365-2249.2004.02449.x ; PubMed Central PMCID: PMC1809034.
    1. Geiger SM, Alexander ND, Fujiwara RT, Brooker S, Cundill B, Diemert DJ, et al.. Necator americanus and helminth co-infections: further down-modulation of hookworm-specific type 1 immune responses. PLoS neglected tropical diseases. 2011;5(9):e1280. Epub 2011/09/13. doi: 10.1371/journal.pntd.0001280; PubMed Central PMCID: PMC3167770.
    1. Santini-Oliveira M, Coler RN, Parra J, Veloso V, Jayashankar L, Pinto PM, et al.. Schistosomiasis vaccine candidate Sm14/GLA-SE: Phase 1 safety and immunogenicity clinical trial in healthy, male adults. Vaccine. 2016;34(4):586–94. Epub 2015/11/17. doi: 10.1016/j.vaccine.2015.10.027 .
    1. Lumsden JM, Schwenk RJ, Rein LE, Moris P, Janssens M, Ofori-Anyinam O, et al.. Protective immunity induced with the RTS,S/AS vaccine is associated with IL-2 and TNF-alpha producing effector and central memory CD4 T cells. PLoS One. 2011;6(7):e20775. Epub 2011/07/23. doi: 10.1371/journal.pone.0020775; PubMed Central PMCID: PMC3136919.
    1. De Rosa SC, Lu FX, Yu J, Perfetto SP, Falloon J, Moser S, et al.. Vaccination in humans generates broad T cell cytokine responses. Journal of immunology (Baltimore, Md: 1950). 2004;173(9):5372–80. Epub 2004/10/21. doi: 10.4049/jimmunol.173.9.5372 .
    1. Stubbe M, Vanderheyde N, Goldman M, Marchant A. Antigen-specific central memory CD4+ T lymphocytes produce multiple cytokines and proliferate in vivo in humans. Journal of immunology (Baltimore, Md: 1950). 2006;177(11):8185–90. Epub 2006/11/23. doi: 10.4049/jimmunol.177.11.8185 .
    1. Huaman MC, Mullen GE, Long CA, Mahanty S. Plasmodium falciparum apical membrane antigen 1 vaccine elicits multifunctional CD4 cytokine-producing and memory T cells. Vaccine. 2009;27(38):5239–46. Epub 2009/07/14. doi: 10.1016/j.vaccine.2009.06.066 ; PubMed Central PMCID: PMC2744949.
    1. Bansal A, Jackson B, West K, Wang S, Lu S, Kennedy JS, et al.. Multifunctional T-cell characteristics induced by a polyvalent DNA prime/protein boost human immunodeficiency virus type 1 vaccine regimen given to healthy adults are dependent on the route and dose of administration. Journal of virology. 2008;82(13):6458–69. Epub 2008/05/02. doi: 10.1128/JVI.00068-08 ; PubMed Central PMCID: PMC2447094.
    1. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ, et al.. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nature medicine. 2007;13(7):843–50. Epub 2007/06/15. doi: 10.1038/nm1592 .
    1. Lewinsohn DA, Lewinsohn DM, Scriba TJ. Polyfunctional CD4(+) T Cells As Targets for Tuberculosis Vaccination. Frontiers in immunology. 2017;8:1262. Epub 2017/10/21. doi: 10.3389/fimmu.2017.01262; PubMed Central PMCID: PMC5633696.
    1. Aringer M. Vaccination under TNF blockade—less effective, but worthwhile. Arthritis research & therapy. 2012;14(3):117. Epub 2012/05/15. doi: 10.1186/ar3808; PubMed Central PMCID: PMC3446474.
    1. Salinas GF, De Rycke L, Barendregt B, Paramarta JE, Hreggvidsdottir H, Cantaert T, et al.. Anti-TNF treatment blocks the induction of T cell-dependent humoral responses. Ann Rheum Dis. 2013;72(6):1037–43. Epub 2012/09/13. doi: 10.1136/annrheumdis-2011-201270 .
    1. Kobie JJ, Zheng B, Bryk P, Barnes M, Ritchlin CT, Tabechian DA, et al.. Decreased influenza-specific B cell responses in rheumatoid arthritis patients treated with anti-tumor necrosis factor. Arthritis research & therapy. 2011;13(6):R209. Epub 2011/12/20. doi: 10.1186/ar3542; PubMed Central PMCID: PMC3334662.
    1. Moller JF, Moller B, Wiedenmann B, Berg T, Schott E. CD154, a marker of antigen-specific stimulation of CD4 T cells, is associated with response to treatment in patients with chronic HCV infection. J Viral Hepat. 2011;18(7):e341–9. Epub 2011/06/23. doi: 10.1111/j.1365-2893.2010.01430.x .
    1. van Zelm MC, Bartol SJ, Driessen GJ, Mascart F, Reisli I, Franco JL, et al.. Human CD19 and CD40L deficiencies impair antibody selection and differentially affect somatic hypermutation. The Journal of allergy and clinical immunology. 2014;134(1):135–44. Epub 2014/01/15. doi: 10.1016/j.jaci.2013.11.015 .
    1. Wambre E, Bajzik V, DeLong JH, O’Brien K, Nguyen QA, Speake C, et al.. A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci Transl Med. 2017;9(401). Epub 2017/08/05. doi: 10.1126/scitranslmed.aam9171; PubMed Central PMCID: PMC5987220.
    1. Delgobo M, Frantz S. Heart failure in cancer: role of checkpoint inhibitors. J Thorac Dis. 2018;10(Suppl 35):S4323–S34. Epub 2019/02/01. doi: 10.21037/jtd.2018.10.07 ; PubMed Central PMCID: PMC6328397.
    1. Armah GE, Breiman RF, Tapia MD, Dallas MJ, Neuzil KM, Binka FN, et al.. Immunogenicity of the pentavalent rotavirus vaccine in African infants. Vaccine. 2012;30Suppl 1:A86–93. Epub 2012/05/02. doi: 10.1016/j.vaccine.2011.10.006 .
    1. Jongo SA, Urbano V, Church LWP, Olotu A, Manock SR, Schindler T, et al.. Immunogenicity and Protective Efficacy of Radiation-Attenuated and Chemo-Attenuated PfSPZ Vaccines in Equatoguinean Adults. The American journal of tropical medicine and hygiene. 2020. Epub 2020/11/19. doi: 10.4269/ajtmh.20-0435.

Source: PubMed

3
Prenumerera