Metabolomic Profiling Reveals Sex Specific Associations with Chronic Obstructive Pulmonary Disease and Emphysema

Lucas A Gillenwater, Katerina J Kechris, Katherine A Pratte, Nichole Reisdorph, Irina Petrache, Wassim W Labaki, Wanda O'Neal, Jerry A Krishnan, Victor E Ortega, Dawn L DeMeo, Russell P Bowler, Lucas A Gillenwater, Katerina J Kechris, Katherine A Pratte, Nichole Reisdorph, Irina Petrache, Wassim W Labaki, Wanda O'Neal, Jerry A Krishnan, Victor E Ortega, Dawn L DeMeo, Russell P Bowler

Abstract

Susceptibility and progression of lung disease, as well as response to treatment, often differ by sex, yet the metabolic mechanisms driving these sex-specific differences are still poorly understood. Women with chronic obstructive pulmonary disease (COPD) have less emphysema and more small airway disease on average than men, though these differences become less pronounced with more severe airflow limitation. While small studies of targeted metabolites have identified compounds differing by sex and COPD status, the sex-specific effect of COPD on systemic metabolism has yet to be interrogated. Significant sex differences were observed in 9 of the 11 modules identified in COPDGene. Sex-specific associations by COPD status and emphysema were observed in 3 modules for each phenotype. Sex stratified individual metabolite associations with COPD demonstrated male-specific associations in sphingomyelins and female-specific associations in acyl carnitines and phosphatidylethanolamines. There was high preservation of module assignments in SPIROMICS (SubPopulations and InteRmediate Outcome Measures In COPD Study) and similar female-specific shift in acyl carnitines. Several COPD associated metabolites differed by sex. Acyl carnitines and sphingomyelins demonstrate sex-specific abundances and may represent important metabolic signatures of sex differences in COPD. Accurately characterizing the sex-specific molecular differences in COPD is vital for personalized diagnostics and therapeutics.

Keywords: COPD; emphysema; lung; network analysis; sex differences; weighted gene co-expression network analysis (WGCNA).

Conflict of interest statement

D.L.D. has received support from the National Institutes of Health, Bayer, Novartis, the Alpha-1 Foundation and a BWH First in Women Precision Medicine Award. W.W.L. reports grants from NIH, non-financial support from Pulmonx and personal fees from Konica Minolta.

Figures

Figure 1
Figure 1
WGCNA results. (A,B). Hierarchical clustering tree (dendrogram) of genes based on human brain co-expression network for COPDGene (A) and SPIROMICS (B). Each “leaf” (short vertical line) corresponds to one gene. The color rows below the dendrogram indicate module membership. (C) Module Preservation between cohorts. Each row of the table corresponds to one SPIROMICS module (labeled by color as well as text), and each column corresponds to one COPDGene module. Numbers in the table indicate metabolite counts in the intersection of the corresponding modules. Coloring of the table encodes−log(p), with p being the Fisher’s exact test p-value for the overlap of the two modules. The darker the red color, the more significant the overlap is. D-E. Heat maps showing association between module eigenvalue and clinical variables in the COPDGene (D) and SPIROMICS (E) cohorts for all subjects, males, and females. Module metabolite assignments are based on the full cohort of profiles. Modules with a negative association were assigned shades of purple and those with a positive association were assigned shades of green based on the 10 log10 FDR or nominal p value for COPDGene and SPIROMICS, respectively.
Figure 2
Figure 2
Preservation of female set-specific modules and male set-specific modules in Figure 2. Preservation of female set-specific modules and male set-specific modules in COPDGene. Each row of the table corresponds to one male set-specific module (labeled by color as well as text), and each column corresponds to one female set-specific module. Numbers in the table indicate metabolite counts in the intersection of the corresponding modules. Coloring of the table encodes−log(p), with p being the Fisher’s exact test p-value for the overlap of the two modules. The stronger the red color, the more significant the overlap is.
Figure 3
Figure 3
Scatter plot of sex specific betas for COPD models in COPDGene. The x-axis represents the beta estimates in the female stratum while the y-axis represents the beta estimates in the male stratum. Point shape corresponds with module assignment. Points are colored by significance in specific strata.
Figure 4
Figure 4
Barplot of beta estimates most divergent by sex. Metabolites along x-axis represent the 10 metabolites with the most sex-divergent beta estimates for COPD models. The red bars represent females, while the blue bars are for males. Only ceramide (d18:1/17:0, d17:1/18:0)* reached significance in males.
Figure 5
Figure 5
Scatter plot of sex specific betas in percent emphysema. The x-axis represents the beta estimates in the female stratum while the y-axis represents the beta estimates in the male stratum. Point shape corresponds with module assignment. Points are colored by significance in specific strata.

References

    1. Trabado S., Al-Salameh A., Croixmarie V., Masson P., Corruble E., Fève B., Colle R., Ripoll L., Walther B., Boursier-Neyret C., et al. The human plasma-metabolome: Reference values in 800 French healthy volunteers; impact of cholesterol, gender and age. PLoS ONE. 2017;12:e0173615. doi: 10.1371/journal.pone.0173615.
    1. Han M.K. Chronic Obstructive Pulmonary Disease in Women: A Biologically Focused Review with a Systematic Search Strategy. Int. J. Chronic Obstr. Pulm. Dis. 2020;15:711–721. doi: 10.2147/COPD.S237228.
    1. Terzikhan N., Verhamme K.M.C., Hofman A., Stricker B.H., Brusselle G.G., la Housse L. Prevalence and incidence of COPD in smokers and non-smokers: The Rotterdam Study. Eur. J. Epidemiol. 2016;31:785–792. doi: 10.1007/s10654-016-0132-z.
    1. Heron M. Deaths: Leading Causes for 2017. Natl. Vital. Stat. Rep. 2019;68:1–77.
    1. Barnes P.J. Sex Differences in Chronic Obstructive Pulmonary Disease Mechanisms. Am. J. Respir. Crit. Care Med. 2016;193:813–814. doi: 10.1164/rccm.201512-2379ED.
    1. Silverman E.K., Weiss S.T., Drazen J.M., Chapman H.A., Carey V., Campbell E.J., Denish P., Silverman R.A., Celedon J.C., Reilly J.J., et al. Gender-Related Differences in Severe, Early-Onset Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2000;162:2152–2158. doi: 10.1164/ajrccm.162.6.2003112.
    1. Foreman M.G., Zhang L., Murphy J., Hansel N.N., Make B., Hokanson J.E., Washko G., Regan E.A., Crapo J.D., Silverman E.K., et al. Early-Onset Chronic Obstructive Pulmonary Disease Is Associated with Female Sex, Maternal Factors, and African American Race in the COPDGene Study. Am. J. Respir. Crit. Care Med. 2011;184:414–420. doi: 10.1164/rccm.201011-1928OC.
    1. Martinez F.J., Curtis J.L., Sciurba F., Mumford J., Giardino N.D., Weinmann G., Kazerooni E., Murray S., Criner G.J., Sin D.D., et al. Sex Differences in Severe Pulmonary Emphysema. Am. J. Respir. Crit. Care Med. 2007;176:243–252. doi: 10.1164/rccm.200606-828OC.
    1. Hardin M., Foreman M., Dransfield M.T., Hansel N., Han M.K., Cho M.H., Bhatt S.P., Ramsdell J., Lynch D., Curtis J.L., et al. Sex-specific features of emphysema among current and former smokers with COPD. Eur. Respir. J. 2016;47:104–112. doi: 10.1183/13993003.00996-2015.
    1. Trigueros J.A., Riesco J.A., Alcázar-Navarrete B., Campuzano A., Pérez J. Clinical Features of Women With COPD: Sex Differences in A Cross-Sectional Study in Spain (“The ESPIRAL-ES Study”) [(accessed on 16 July 2020)];Int. J. Chronic Obstr. Pulm. Disease. 2019 14:2469–2478. doi: 10.2147/COPD.S217921. Available online: .
    1. Mittelstrass K., Ried J.S., Yu Z., Krumsiek J., Gieger C., Prehn C., Roemisch-Margl W., Polonikov A., Peters A., Theis F.J., et al. Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers. PLoS Genet. 2011;7:e1002215. doi: 10.1371/journal.pgen.1002215.
    1. Darst B.F., Koscik R.L., Hogan K.J., Johnson S.C., Engelman C.D. Longitudinal plasma metabolomics of aging and sex. Aging. 2019;11:1262–1282. doi: 10.18632/aging.101837.
    1. Krumsiek J., Mittelstrass K., Do K.T., Stückler F., Ried J.S., Adamski J., Peters A., Illig T., Kronenberg F., Friedrich N., et al. Gender-specific pathway differences in the human serum metabolome. Metabolomics. 2015;11:1815–1833. doi: 10.1007/s11306-015-0829-0.
    1. Bowler R.P., Jacobson S., Cruickshank C., Hughes G.J., Siska C., Ory D.S., Petrache I., Schaffer J.E., Reisdorph N., Kechris K. Plasma Sphingolipids Associated with Chronic Obstructive Pulmonary Disease Phenotypes. Am. J. Respir. Crit. Care Med. 2015;191:275–284. doi: 10.1164/rccm.201410-1771OC.
    1. Koike K., Berdyshev E.V., Bowler R.P., Scruggs A.K., Cao D., Schweitzer K.S., Serban K.A., Petrache I. Bioactive Sphingolipids in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Ann. Am. Thorac. Soc. 2018;15:S249–S252. doi: 10.1513/AnnalsATS.201809-592MG.
    1. Pinto-Plata V., Casanova C., Divo M., Tesfaigzi Y., Calhoun V., Sui J., Polverino F., Priolo C., Petersen H., de Torres J.P., et al. Plasma metabolomics and clinical predictors of survival differences in COPD patients. Respir. Res. 2019;20:219. doi: 10.1186/s12931-019-1167-y.
    1. Wang L., Tang Y., Liu S., Mao S., Ling Y., Liu D., He X., Wang X. Metabonomic Profiling of Serum and Urine by 1H NMR-Based Spectroscopy Discriminates Patients with Chronic Obstructive Pulmonary Disease and Healthy Individuals. PLoS ONE. 2013;8:e65675. doi: 10.1371/journal.pone.0065675.
    1. Deidda M., Piras C., Bassareo P.P., Dessalvi C.C., Mercuro G. Metabolomics, a promising approach to translational research in cardiology. IJC Metab. Endocr. 2015;9:31–38. doi: 10.1016/j.ijcme.2015.10.001.
    1. Ząbek A., Stanimirova I., Deja S., Barg W., Kowal A., Korzeniewska A., Orczyk-Pawiłowicz M., Baranowski D., Gdaniec Z., Jankowska R., et al. Fusion of the 1H NMR data of serum, urine and exhaled breath condensate in order to discriminate chronic obstructive pulmonary disease and obstructive sleep apnea syndrome. Metabolomics. 2015;11:1563–1574. doi: 10.1007/s11306-015-0808-5.
    1. Vignoli A., Santini G., Tenori L., Macis G., Mores N., Macagno F., Pagano F., Higenbottam T., Luchinat C., Montuschi P. NMR-Based Metabolomics for the Assessment of Inhaled Pharmacotherapy in Chronic Obstructive Pulmonary Disease Patients. J. Proteome Res. 2020;19:64–74. doi: 10.1021/acs.jproteome.9b00345.
    1. Halper-Stromberg E., Gillenwater L., Cruickshank-Quinn C., O’Neal W.K., Reisdorph N., Petrache I., Zhuang Y., Labaki W.W., Curtis J.L., Wells J., et al. Bronchoalveolar Lavage Fluid from COPD Patients Reveals More Compounds Associated with Disease than Matched Plasma. Metabolism. 2019;9:157. doi: 10.3390/metabo9080157.
    1. Agusti À., Soriano J.B. COPD as a Systemic Disease. COPD: J. Chronic Obstr. Pulm. Dis. 2008;5:133–138. doi: 10.1080/15412550801941349.
    1. Austin V., Crack P.J., Bozinovski S., Miller A.A., Vlahos R. COPD and stroke: Are systemic inflammation and oxidative stress the missing links? Clin. Sci. 2016;130:1039–1050. doi: 10.1042/CS20160043.
    1. Agarwal A.R., Kadam S., Brahme A., Agrawal M., Apte K., Narke G., Kekan K., Madas S., Salvi S. Systemic Immuno-metabolic alterations in chronic obstructive pulmonary disease (COPD) Respir. Res. 2019;20:171. doi: 10.1186/s12931-019-1139-2.
    1. Horvath S., Dong J. Geometric Interpretation of Gene Coexpression Network Analysis. PLoS Comput. Biol. 2008;4:e1000117. doi: 10.1371/journal.pcbi.1000117.
    1. Dileo M.V., Strahan G.D., Bakker M.D., Hoekenga O.A. Weighted Correlation Network Analysis (WGCNA) Applied to the Tomato Fruit Metabolome. PLoS ONE. 2011;6:e26683. doi: 10.1371/journal.pone.0026683.
    1. Li Z., Zhang Y., Hu T., Likhodii S., Sun G., Zhai G., Fan Z., Xuan C., Zhang W. Differential metabolomics analysis allows characterization of diversity of metabolite networks between males and females. PLoS ONE. 2018;13:e0207775. doi: 10.1371/journal.pone.0207775.
    1. Nikkilä J., Sysi-Aho M., Ermolov A., Seppänen-Laakso T., Simell O., Kaski S., Orešič M. Gender-dependent progression of systemic metabolic states in early childhood. Mol. Syst. Biol. 2008;4:197. doi: 10.1038/msb.2008.34.
    1. Goodman-Gruen D., Barrett-Connor E. Sex differences in the assciation of endogenous sex hormone levels and glucose tolerance status in older men and women. Diabetes Care. 2000;23:912–918. doi: 10.2337/diacare.23.7.912.
    1. Zhao J., Leung J.Y.Y., Lin S.L., Schooling C.M. Cigarette smoking and testosterone in men and women: A systematic review and meta-analysis of observational studies. Prev. Med. 2016;85:1–10. doi: 10.1016/j.ypmed.2015.12.021.
    1. Key T.J., Pike M.C., Baron J.A., Moore J.W., Wang D.Y., Thomas B.S., Bulbrook R.D. Cigarette smoking and steroid hormones in women. J. Steroid Biochem. Mol. Biol. 1991;39:529–534. doi: 10.1016/0960-0760(91)90247-3.
    1. Dušková M., Šimůnková K., Hill M., Velíková M., Kubátová J., Kancheva L., Kazihnitková H., Hruškovičová H., Pospíšilová H., Rácz B., et al. Chronic Cigarette Smoking Alters Circulating Sex Hormones and Neuroactive Steroids in Premenopausal Women. Physiol. Res. 2012;61:97–111. doi: 10.33549/physiolres.932164.
    1. Liu G., Lee D.P., Schmidt E., Prasad G.L. Pathway Analysis of Global Metabolomic Profiles Identified Enrichment of Caffeine, Energy, and Arginine Metabolism in Smokers but Not Moist Snuff Consumers. Bioinform. Biol. Insights. 2019;13 doi: 10.1177/1177932219882961.
    1. Gu F., Derkach A., Freedman N.D., Landi M.T., Albanes D., Weinstein S.J., Mondul A.M., Matthews C.E., Guertin K.A., Xiao Q., et al. Cigarette smoking behaviour and blood metabolomics. Int. J. Epidemiol. 2015;45:1421–1432. doi: 10.1093/ije/dyv330.
    1. Kukharenko A., Brito A., Kozhevnikova M.V., Moskaleva N., Markin P.A., Bochkareva N., Korobkova E.O., Belenkov Y.N., Privalova E.V., Larcova E.V., et al. Relationship between the plasma acylcarnitine profile and cardiometabolic risk factors in adults diagnosed with cardiovascular diseases. Clin. Chim. Acta. 2020;507:250–256. doi: 10.1016/j.cca.2020.04.035.
    1. Reuter S.E., Evans A.M. Carnitine and acylcarnitines: Pharmacokinetic, pharmacological and clinical aspects. Clin. Pharm. 2012;51:553–572. doi: 10.1007/BF03261931.
    1. Naz S., Kolmert J., Yang M., Reinke S.N., Kamleh M.A., Snowden S., Heyder T., Levänen B., Erle D.J., Sköld C.M., et al. Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin–lysoPA axis in COPD. Eur. Respir. J. 2017;49:1602322. doi: 10.1183/13993003.02322-2016.
    1. Lommatzsch M., Cicko S., Müller T., Lucattelli M., Bratke K., Stoll P., Grimm M., Dürk T., Zissel G., Ferrari D., et al. Extracellular Adenosine Triphosphate and Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2010;181:928–934. doi: 10.1164/rccm.200910-1506OC.
    1. Balgoma D., Yang M., Sjödin M., Snowden S., Karimi R., Levänen B., Merikallio H., Kaarteenaho R., Palmberg L., Larsson K., et al. Linoleic acid-derived lipid mediators increase in a female-dominated subphenotype of COPD. Eur. Respir. J. 2016;47:1645–1656. doi: 10.1183/13993003.01080-2015.
    1. Kohler M., Sandberg A., Kjellqvist S., Thomas A., Karimi R., Nyrén S., Eklund A., Thevis M., Sköld C.M., Wheelock Å.M. Gender differences in the bronchoalveolar lavage cell proteome of patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2013;131:743–751.e9. doi: 10.1016/j.jaci.2012.09.024.
    1. Tam A., Churg A., Wright J.L., Zhou S., Kirby M., Coxson H.O., Lam S., Man S.F.P., Sin D.D. Sex Differences in Airway Remodeling in a Mouse Model of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2016;193:825–834. doi: 10.1164/rccm.201503-0487OC.
    1. Zhang W.Z., Rice M.C., Hoffman K.L., Oromendia C., Barjaktarevic I.Z., Wells J.M., Hastie T.A., Labaki W.W., Cooper C.B., Comellas A.P., et al. Association of urine mitochondrial DNA with clinical measures of COPD in the SPIROMICS cohort. Am. Soc. Clin. Investig. 2020;5 doi: 10.1172/jci.insight.133984.
    1. Berge M., van den Brandsma C.-A., Faiz A., Vries M., de Rathnayake S.N.H., Parém P.D. Differential lung tissue gene expression in males and females: Implications for the susceptibility to develop COPD. [(accessed on 22 February 2021)];Eur. Respir. J. 2019 154 Available online: .
    1. Agudelo C.W., Kumley B.K., Area-Gomez E., Xu Y., Dabo A.J., Geraghty P., Campos M., Foronjy R., Garcia-Arcos I. Decreased surfactant lipids correlate with lung function in chronic obstructive pulmonary disease (COPD) PLoS ONE. 2020;15:e0228279. doi: 10.1371/journal.pone.0228279.
    1. Calzada E., Onguka O., Claypool S.M. Phosphatidylethanolamine Metabolism in Health and Disease. Int. Rev. Cell Mol. Biol. 2016;321:29–88. doi: 10.1016/bs.ircmb.2015.10.001.
    1. Regan E.A., Hokanson J.E., Murphy J.R., Make B., Lynch D.A., Beaty T.H. Genetic Epidemiology of COPD (COPDGene) Study Design. COPD J. Chronic Obstr. Pulm. Dis. 2011;7:32–43. doi: 10.3109/15412550903499522.
    1. Pauwels R.A., Buist A.S., Calverley P.M.A., Jenkins C.R., Hurd S.S. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2001;163:1256–1276. doi: 10.1164/ajrccm.163.5.2101039.
    1. Wan E.S., Castaldi P.J., Cho M.H., Hokanson J.E., Regan E.A., Make B.J., Beaty T.H., Han M.K., Curtis J.L., Curran-Everett D., et al. Epidemiology, genetics, and subtyping of preserved ratio impaired spirometry (PRISm) in COPDGene. Respir. Res. 2014;15:1–13. doi: 10.1186/s12931-014-0089-y.
    1. Hansel N.N., Paulin L.M., Gassett A.J., Peng R.D., Alexis N., Fan V.S., Bleecker E., Bowler R., Comellas A.P., Dransfield M., et al. Design of the Subpopulations and Intermediate Outcome Measures in COPD (SPIROMICS) AIR Study. BMJ Open Respir. Res. 2017;4:e000186. doi: 10.1136/bmjresp-2017-000186.
    1. Vestbo J., Hurd S.S., Agustí A.G., Jones P.W., Vogelmeier C., Anzueto A. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 2013;187:347–365. doi: 10.1164/rccm.201204-0596PP.
    1. Pompe E., Strand M., van Rikxoort E.M., Hoffman E.A., Barr R.G., Charbonnier J.P., Humphries S., Han M.K., Hokanson J.E., Make B.J., et al. Five-year Progression of Emphysema and Air Trapping at CT in Smokers with and Those without Chronic Obstructive Pulmonary Disease: Results from the COPDGene Study. Radiology. 2020;295:218–226. doi: 10.1148/radiol.2020191429.
    1. Lynch D.A., Moore C.M., Wilson C., Nevrekar D., Jennermann T., Humphries S.M., Austin J.H.M., Grenier P.A., Kauczor H.-U., Han M.K., et al. CT-based Visual Classification of Emphysema: Association with Mortality in the COPDGene Study. Radiology. 2018;288:859–866. doi: 10.1148/radiol.2018172294.
    1. Sieren J.P., Newell J.D., Barr R.G., Bleecker E.R., Burnette N., Carretta E.E., Couper D., Goldin J., Guo J., Han M.K., et al. SPIROMICS Protocol for Multicenter Quantitative Computed Tomography to Phenotype the Lungs. Am. J. Respir. Crit. Care Med. 2016;194:794–806. doi: 10.1164/rccm.201506-1208PP.
    1. Bhatt S.P., Nath H.P., Kim Y.-I., Ramachandran R., Watts J.R., Terry N.L.J. Centrilobular emphysema and coronary artery calcification: Mediation analysis in the SPIROMICS cohort. Respir. Res. 2018;19:257. doi: 10.1186/s12931-018-0946-1.
    1. Evans A.M., de Haven C.D., Barrett T., Mitchell M., Milgram E. Integrated, Nontargeted Ultrahigh Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry Platform for the Identification and Relative Quantification of the Small-Molecule Complement of Biological Systems. Anal. Chem. 2009;81:6656–6667. doi: 10.1021/ac901536h.
    1. De Haven C.D., Evans A.M., Dai H., A Lawton K. Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J. Chemin. 2010;2:9. doi: 10.1186/1758-2946-2-9.
    1. Miller M.J., Kennedy A.D., Eckhart A.D., Burrage L.C., Wulff J.E., Miller L.A., Milburn M.V., Ryals J.A., Beaudet A.L., Sun Q., et al. Untargeted metabolomic analysis for the clinical screening of inborn errors of metabolism. J. Inherit. Metab. Dis. 2015;38:1029–1039. doi: 10.1007/s10545-015-9843-7.
    1. Gillenwater L.A., Pratte K.A., Hobbs B.D., Cho M.H., Zhuang Y., Halper-Stromberg E., Cruickshank-Quinn C., Reisdorph N., Petrache I., Labaki W.W., et al. Plasma Metabolomic Signatures of Chronic Obstructive Pulmonary Disease and the Impact of Genetic Variants on Phenotype-Driven Modules. Netw. Syst. Med. 2020;3:159–181. doi: 10.1089/nsm.2020.0009.
    1. R Core Team R: A Language and Environment for Statistical Computing. [(accessed on 30 December 2020)];2018 Available online: .
    1. Langfelder P., Zhang B., Horvath S. Defining clusters from a hierarchical cluster tree: The Dynamic Tree Cut package for R. Bioinformatics. 2007;24:719–720. doi: 10.1093/bioinformatics/btm563.
    1. Pei G., Chen L., Zhang W. Chapter Nine—WGCNA Application to Proteomic and Metabolomic Data Analysis. In: Shukla A.K., editor. Methods in Enzymology. Vol. 585. Academic Press; Cambridge, MA, USA: 2017. [(accessed on 3 June 2020)]. pp. 135–158. Available online: .
    1. Benjamini Y., Hochberg Y. Controlling the False Discovery Rate—A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x.
    1. Langfelder P., Luo R., Oldham M.C., Horvath S. Is My Network Module Preserved and Reproducible? PLoS Comput. Biol. 2011;7:e1001057. doi: 10.1371/journal.pcbi.1001057.
    1. Fuller T.F., Ghazalpour A., Aten J.E., Drake T.A., Lusis A.J., Horvath S. Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm. Genome. 2007;18:463–472. doi: 10.1007/s00335-007-9043-3.

Source: PubMed

3
Prenumerera