Riboflavin Supplementation Promotes Butyrate Production in the Absence of Gross Compositional Changes in the Gut Microbiota

Lei Liu, Mehdi Sadaghian Sadabad, Giorgio Gabarrini, Paola Lisotto, Julius Z H von Martels, Hannah R Wardill, Gerard Dijkstra, Robert E Steinert, Hermie J M Harmsen, Lei Liu, Mehdi Sadaghian Sadabad, Giorgio Gabarrini, Paola Lisotto, Julius Z H von Martels, Hannah R Wardill, Gerard Dijkstra, Robert E Steinert, Hermie J M Harmsen

Abstract

Aims: We performed a randomized, placebo-controlled trial, RIBOGUT, to study the effect of 2 weeks supplementation with either 50 or 100 mg/d of riboflavin on (i) Faecalibacterium prausnitzii abundance, (ii) gut microbiota composition, (iii) short-chain fatty acid (SCFA) profiles, and (iv) the satiety and gut hormones. Results: Neither dose of riboflavin, analyzed separately, impacted the abundance of F. prausnitzii, and only minor differences in SCFA concentrations were observed. However, combining the results of the 50 and 100 mg/d groups showed a significant increase in butyrate production. While the gut bacterial diversity was not affected by riboflavin supplementation, the complexity and stability of the bacterial network were enhanced. Oral glucose tolerance tests showed a trend of increased plasma insulin concentration and GLP-1 after 100 mg/d supplementation. Innovation: Dietary supplements, such as vitamins, promote health by either directly targeting host physiology or indirectly via gut microbiota modulation. Here, we show for the first time that riboflavin intervention changes the activity of the microbiota. The butyrate production increased after intervention and although the composition did not change significantly, the network of microbial interactions was enforced. Conclusion: This RIBOGUT study suggests that oral riboflavin supplementation promotes butyrate production in the absence of major shifts in gut microbiota composition. ClinicalTrials.gov Identifier: NCT02929459.

Keywords: Faecalibacterium prausnitzii; bacterial networks; butyrate (short-chain fatty acids); insulin; microbiota; riboflavin.

Conflict of interest statement

This clinical RIBOGUT trial was sponsored by DSM Nutritional Products AG. H.J.M.H. and G.D. received research funding from DSM.

Figures

FIG. 1.
FIG. 1.
Study design for the riboflavin intervention for N = 105 participants (A), the oGTT substudy in 36 participants (B), and flowchart for the participant inclusion (C). oGTT, oral glucose tolerance test.
FIG. 2.
FIG. 2.
The results of Faecalibacterium quantification based on FISH with probe Fprau645 and 16S rRNA gene sequencing. (A–C) The abundances of F. prausnitzii from FISH (A), the relative abundances (B), and 16S rRNA gene sequencing (C) were not changed over all time points among three groups (p > 0.05 for all groups, Kruskal–Wallis test). (D) The relative abundances of ASVs from 16S rRNA gene sequencing, which corresponded to the probe Fprau645, were not changed. ASV, Amplicon Sequence Variant; FISH, fluorescence in situ hybridization.
FIG. 3.
FIG. 3.
PCoA of the distances between taxonomical composition based on the Bray-Curtis (A) and weighted-Unifrac (B) over all time points of all three groups. Each dot represents a sample separated by color code and shape as indicated in the legend. PCoA, principal coordinates analysis.
FIG. 4.
FIG. 4.
PCoA of individual's taxonomical composition based on the Bray-Curtis distance between T2 and T3. (A–C), samples' taxonomical composition in each group compared between T2 and T3; (D–F), paired samples' taxonomical composition in each group compared between T2 and T3. Each dot represents a sample, and the dashed lines indicate the fecal samples from the same individual.
FIG. 5.
FIG. 5.
Boxplots of SCFAs concentrations of paired fecal samples significantly increased after 2 weeks of riboflavin supplementation in pairwise comparison. (A) Butyrate concentration increased significantly in Ribo100 group (p = 0.05, Wilcoxon signed-rank test); (B) acetate concentration increased significantly in Ribo50 group (p = 0.02, Wilcoxon signed-rank test); (C) no significant change was observed with propionate concentration. Each dot represents a sample, and horizontal bar indicates significant differences. SCFA, short-chain fatty acids.
FIG. 6.
FIG. 6.
Fecal butyrate concentration was increased in combining data of two doses riboflavin intervention groups. (A) Comparison within placebo and RiboCom groups (Mann–Whitney U test). (B) Pairwise comparison of samples T2 and T3 within placebo and RiboCom groups (Wilcoxon signed-rank test). Horizontal bar indicates adjusted p-values.
FIG. 7.
FIG. 7.
Gut bacterial networks over all time points. (A) Visualization of constructed MENs of placebo (top) and RiboCom groups (bottom) from T1 to T4. Top 5 large modules are shown in different colors, and smaller modules are shown in gray. Each network is shown based on the Pearson correlations (RMT-threshold 0.67, FDR adjusted p < 0.05) between the abundances of bacterial ASVs of 36 placebo samples and 69 RiboCom samples. N, nodes; L, links. (B–E), links (B), nodes (C), average degree (avgK) (D), and average path distance (GD) (E) are topological features of gut microbial networks. The baselines of T1 and T2 were calculated as means ± SE, and the values of T3 and T4 networks shown as dots. MEN, molecular ecological network; RMT, random matrix theory.
FIG. 8.
FIG. 8.
Boxplots of riboflavin concentrations in feces and plasma samples. (A) Riboflavin concentration in fecal samples was significantly increased after intervention at T3 (p < 0.05, Kruskal–Wallis test). (B) Riboflavin plasma levels of the oGTT groups significantly increased at T3 in both riboflavin supplementation groups (p < 0.05, Mann–Whitney U test). No differences in the placebo group were found in either fecal or plasma samples.
FIG. 9.
FIG. 9.
Oral glucose tolerance test results of plasma glucose (A, B) and insulin concentration (C, D) at T2 before riboflavin supplementation (A, C) and T3 after riboflavin supplementation (B, D).

References

    1. Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 2003;4:2; doi: 10.1186/1471-2105-4-2.
    1. Barcenilla A, Pryde SE, Martin JC, et al. . Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 2000;66(4):1654–1661; doi: 10.1128/AEM.66.4.1654-1661.2000.
    1. Benus RF, Harmsen HJ, Welling GW, et al. . Impact of digestive and oropharyngeal decontamination on the intestinal microbiota in ICU patients. Intensive Care Med 2010;36(8):1394–1402; doi: 10.1007/s00134-010-1826-4.
    1. Biagi E, Mengucci C, Barone M, et al. . Effects of Vitamin B2 supplementation in broilers microbiota and metabolome. Microorganisms 2020;8(8):1134; doi: 10.3390/microorganisms8081134.
    1. Broesder A, Kosta A, Woerdenbag HJ, et al. . pH-dependent ileocolonic drug delivery, part II: Preclinical evaluation of novel drugs and novel excipients. Drug Discov Today 2020;25(8):1374–1388; doi: 10.1016/j.drudis.2020.06.012.
    1. Brubaker PL. Glucagon-like Peptide-2 and the regulation of intestinal growth and function. Compr Physiol 2018;8(3):1185–1210; doi: 10.1002/cphy.c170055.
    1. Cani PD, Lecourt E, Dewulf EM, et al. . Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 2009;90(5):1236–1243; doi: 10.3945/ajcn.2009.28095.
    1. Caporaso JG, Kuczynski J, Stombaugh J, et al. . QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7(5):335–336; doi: 10.1038/nmeth.f.303.
    1. Carr A, Diener C, Baliga NS, et al. . Use and abuse of correlation analyses in microbial ecology. ISME J 2019;13(11):2647–2655; doi: 10.1038/s41396-019-0459-z.
    1. Chen Q-L, Hu H-W, Sun A-Q, et al. . Aridity decreases soil protistan network complexity and stability. Soil Biol Biochem 2022;166:108575; doi: 10.1016/j.soilbio.2022.108575.
    1. Choi HJ, Jeon SY, Hong WK, et al. . Effect of glucose ingestion in plasma markers of inflammation and oxidative stress: Analysis of 16 plasma markers from oral glucose tolerance test samples of normal and diabetic patients. Diabetes Res Clin Pract 2013;99(2):e27–e31; doi: 10.1016/j.diabres.2012.01.005.
    1. Cole JR, Wang Q, Fish JA, et al. . Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014;42(Database issue):D633–D642; doi: 10.1093/nar/gkt1244.
    1. Correa-Oliveira R, Fachi JL, Vieira A, et al. . Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol 2016;5(4):e73; doi: 10.1038/cti.2016.17.
    1. Cree MG, Zwetsloot JJ, Herndon DN, et al. . Insulin sensitivity is related to fat oxidation and protein kinase C activity in children with acute burn injury. J Burn Care Res 2008;29(4):585–594; doi: 10.1097/BCR.0b013e31817db88f.
    1. Deleu S, Machiels K, Raes J, et al. . Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine 2021;66:103293; doi: 10.1016/j.ebiom.2021.103293.
    1. Deng Y, Jiang YH, Yang Y, et al. . Molecular ecological network analyses. BMC Bioinform 2012;13:113; doi: 10.1186/1471-2105-13-113.
    1. Donohoe DR, Garge N, Zhang X, et al. . The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 2011;13(5):517–526; doi: 10.1016/j.cmet.2011.02.018.
    1. Duncan SH, Hold GL, Harmsen HJM, et al. . Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 2002;52(Pt 6):2141–2146; doi: 10.1099/00207713-52-6-2141.
    1. Duncan SH, Holtrop G, Lobley GE, et al. . Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 2004;91(6):915–923; doi: 10.1079/BJN20041150.
    1. Edgar RC, Haas BJ, Clemente JC, et al. . UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011;27(16):2194–2200; doi: 10.1093/bioinformatics/btr381.
    1. Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord 2014;15(3):189–196; doi: 10.1007/s11154-014-9288-6.
    1. Flint HJ, Bayer EA, Rincon MT, et al. . Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat Rev Microbiol 2008;6(2):121–131; doi: 10.1038/nrmicro1817.
    1. Flint HJ, Scott KP, Duncan SH, et al. . Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012;3(4):289–306; doi: 10.4161/gmic.19897.
    1. Gacesa R, Kurilshikov A, Vich Vila A, et al. . Environmental factors shaping the gut microbiome in a Dutch population. Nature 2022;604(7907):732–739; doi: 10.1038/s41586-022-04567-7.
    1. Ghoshal U, Shukla R, Srivastava D, et al. . Irritable bowel syndrome, particularly the constipation-predominant form, involves an increase in Methanobrevibacter smithii, which is associated with higher methane production. Gut Liver 2016;10(6):932–938; doi: 10.5009/gnl15588.
    1. Goberna M, Montesinos-Navarro A, Valiente-Banuet A, et al. . Incorporating phylogenetic metrics to microbial co-occurrence networks based on amplicon sequences to discern community assembly processes. Mol Ecol Resour 2019;19(6):1552–1564; doi: 10.1111/1755-0998.13079.
    1. Heida FH, van Zoonen A, Hulscher JBF, et al. . A necrotizing enterocolitis-associated gut microbiota is present in the meconium: Results of a Prospective Study. Clin Infect Dis 2016;62(7):863–870; doi: 10.1093/cid/ciw016.
    1. Khan MT, Browne WR, van Dijl JM, et al. . How can Faecalibacterium prausnitzii employ riboflavin for extracellular electron transfer? Antioxid Redox Sign 2012a;17(10):1433–1440; doi: 10.1089/ars.2012.4701.
    1. Khan MT, Duncan SH, Stams AJ, et al. . The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J 2012b;6(8):1578–1585; doi: 10.1038/ismej.2012.5.
    1. Kimura I, Ichimura A, Ohue-Kitano R, et al. . Free fatty acid receptors in health and disease. Physiol Rev 2020;100(1):171–210; doi: 10.1152/physrev.00041.2018.
    1. Knobbe TJ, Douwes RM, Kremer D, et al. . Altered gut microbial fermentation and colonization with Methanobrevibacter smithii in renal transplant recipients. J Clin Med 2020;9(2):518; doi: 10.3390/jcm9020518.
    1. Ma SW, Tomlinson B, Benzie IF. A study of the effect of oral glucose loading on plasma oxidant: Antioxidant balance in normal subjects. Eur J Nutr 2005;44(4):250–254; doi: 10.1007/s00394-004-0518-7.
    1. Mahalle N, Kulkarni MV, Naik SS, et al. . Association of dietary factors with insulin resistance and inflammatory markers in subjects with diabetes mellitus and coronary artery disease in Indian population. J Diabetes Complications 2014;28(4):536–541; doi: 10.1016/j.jdiacomp.2012.09.008.
    1. Manichanh C, Rigottier-Gois L, Bonnaud E, et al. . Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 2006;55(2):205–211; doi: 10.1136/gut.2005.073817.
    1. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 2011;17(1):3; doi: 10.14806/ej.17.1.200.
    1. Parada Venegas D, De la Fuente MK, Landskron G, et al. . Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 2019;10:277; doi: 10.3389/fimmu.2019.00277.
    1. Pham VT, Dold S, Rehman A, et al. . Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr Res 2021a;95:35–53; doi: 10.1016/j.nutres.2021.09.001.
    1. Pham VT, Fehlbaum S, Seifert N, et al. . Effects of colon-targeted vitamins on the composition and metabolic activity of the human gut microbiome- a pilot study. Gut Microbes 2021b;13(1):1–20; doi: 10.1080/19490976.2021.1875774.
    1. Powers HJ. Riboflavin (vitamin B-2) and health. Am J Clin Nutr 2003;77(6):1352–1360; doi: 10.1093/ajcn/77.6.1352.
    1. Rognes T, Flouri T, Nichols B, et al. . VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016;4:e2584; doi: 10.7717/peerj.2584.
    1. Sarkar A, Harty S, Moeller AH, et al. . The gut microbiome as a biomarker of differential susceptibility to SARS-CoV-2. Trends Mol Med 2021;27(12):1115–1134; doi: 10.1016/j.molmed.2021.09.009.
    1. Shi J, Sun Y, Wang X, et al. . Microplastics reduce soil microbial network complexity and ecological deterministic selection. Environ Microbiol 2022;24(4):2157–2169; doi: 10.1111/1462-2920.15955.
    1. Sipponen T, Kolho KL. Fecal calprotectin in diagnosis and clinical assessment of inflammatory bowel disease. Scand J Gastroenterol 2015;50(1):74–80; doi: 10.3109/00365521.2014.987809.
    1. Sokol H, Pigneur B, Watterlot L, et al. . Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008;105(43):16731–16736; doi: 10.1073/pnas.0804812105.
    1. Soto-Martin EC, Warnke I, Farquharson FM, et al. . Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities. mBio 2020;11(4):e00886-20; doi: 10.1128/mBio.00886-20.
    1. Steinert RE, Feinle-Bisset C, Asarian L, et al. . Ghrelin, CCK, GLP-1, and PYY(3–36): Secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol Rev 2017;97(1):411–463; doi: 10.1152/physrev.00031.2014.
    1. Steinert RE, Lee YK, Sybesma W. Vitamins for the gut microbiome. Trends Mol Med 2020;26(2):137–140; doi: 10.1016/j.molmed.2019.11.005.
    1. Steinert RE, Sadaghian Sadabad M, Harmsen HJ, et al. . The prebiotic concept and human health: A changing landscape with riboflavin as a novel prebiotic candidate? Eur J Clin Nutr 2016;70(12):1348–1353; doi: 10.1038/ejcn.2016.119.
    1. Suwannasom N, Kao I, Pruss A, et al. . Riboflavin: The health benefits of a forgotten natural vitamin. Int J Mol Sci 2020;21(3):950; doi: 10.3390/ijms21030950.
    1. Tindall BJ. The names Hungateiclostridium Zhang et al. 2018, Hungateiclostridium thermocellum (Viljoen et al. 1926) Zhang et al. 2018, Hungateiclostridium cellulolyticum (Patel et al. 1980) Zhang et al. 2018, Hungateiclostridium aldrichii (Yang et al. 1990) Zhang et al. 2018, Hungateiclostridium alkalicellulosi (Zhilina et al. 2006) Zhang et al. 2018, Hungateiclostridium clariflavum (Shiratori et al. 2009) Zhang et al. 2018, Hungateiclostridium straminisolvens (Kato et al. 2004) Zhang et al. 2018 and Hungateiclostridium saccincola (Koeck et al. 2016) Zhang et al. 2018 contravene Rule 51b of the International Code of Nomenclature of Prokaryotes and require replacement names in the genus Acetivibrio Patel et al. 1980. Int J Syst Evol Microbiol 2019;69(12):3927–3932; doi: 10.1099/ijsem.0.003685.
    1. von Martels JZH, Bourgonje AR, Klaassen MAY, et al. . Riboflavin supplementation in patients with crohn's disease [the RISE-UP study]. J Crohns Colitis 2020;14(5):595–607; doi: 10.1093/ecco-jcc/jjz208.
    1. Walker AW, Ince J, Duncan SH, et al. . Dominant and diet-responsive groups of bacteria within the human colonic microbiota. Isme J 2011;5(2):220–230; doi: 10.1038/Ismej.2010.118.
    1. Wang HB, Wang PY, Wang X, et al. . Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci 2012;57(12):3126–3135; doi: 10.1007/s10620-012-2259-4.
    1. Wu HM, Zhang J, Wang C, et al. . Effects of riboflavin supplementation on performance, nutrient digestion, rumen microbiota composition and activities of Holstein bulls. Br J Nutr 2021;126(9):1288–1295; doi: 10.1017/S0007114520005243.
    1. Zempleni J, Galloway JR, McCormick DB. Pharmacokinetics of orally and intravenously administered riboflavin in healthy humans. Am J Clin Nutr 1996;63(1):54–66; doi: 10.1093/ajcn/63.1.54.
    1. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020;30(6):492–506; doi: 10.1038/s41422-020-0332-7.
    1. Zhou J, Deng Y, Luo F, et al. . Functional molecular ecological networks. mBio 2010;1(4):e00169-10; doi: 10.1128/mBio.00169-10.

Source: PubMed

3
Prenumerera