Comparison of Frequency Transposition and Frequency Compression for People With Extensive Dead Regions in the Cochlea

Marina Salorio-Corbetto, Thomas Baer, Brian C J Moore, Marina Salorio-Corbetto, Thomas Baer, Brian C J Moore

Abstract

The objective was to determine the effects of two frequency-lowering algorithms (frequency transposition, FT, and frequency compression, FC) on audibility, speech identification, and subjective benefit, for people with high-frequency hearing loss and extensive dead regions (DRs) in the cochlea. A single-blind randomized crossover design was used. FT and FC were compared with each other and with a control condition (denoted 'Control') without frequency lowering, using hearing aids that were otherwise identical. Data were collected after at least 6 weeks of experience with a condition. Outcome measures were audibility, scores for consonant identification, scores for word-final /s, z/ detection ( S test), sentence-in-noise intelligibility, and a questionnaire assessing self-perceived benefit (Spatial and Qualities of Hearing Scale). Ten adults with steeply sloping high-frequency hearing loss and extensive DRs were tested. FT and FC improved the audibility of some high-frequency sounds for 7 and 9 participants out of 10, respectively. At the group level, performance for FT and FC did not differ significantly from that for Control for any of the outcome measures. However, the pattern of consonant confusions varied across conditions. Bayesian analysis of the confusion matrices revealed a trend for FT to lead to more consistent error patterns than FC and Control. Thus, FT may have the potential to give greater benefit than Control or FC following extended experience or training.

Keywords: dead regions; frequency compression; frequency lowering; frequency transposition; hearing aids.

Figures

Figure 1.
Figure 1.
Schematic representation of frequency transposition (FT, bottom left) and frequency compression (FC, bottom right). For FT, the source band (SB) and the destination band (DB) have the same width. For FC, the destination band is narrower than the source band. FT = frequency transposition; FC = frequency compression.
Figure 2.
Figure 2.
Fast PTCs for each ear. Participants are identified by P followed by a number and a subscript indicating the ear, right (R) or left (L).The signal frequency (fs)and level in each case are indicated by a star. The minimum masker frequency (MMF) is shown. The jagged line indicates the masker level as a function of masker center frequency. Two PTCs are plotted, one for an upward frequency sweep and one for a downward frequency sweep, except for P15R, as described in the text. The green line shows the smoothed curve derived from the two PTCs. fs=signal frequency; MMF = minimum masker frequency.
Figure 3.
Figure 3.
Mean ratings for the ‘Difference test.’
Figure 4.
Figure 4.
Consonant-identification scores for the group (average) and for each participant. Outcomes are shown for each vowel context (/i/, /a/, /u/) and across vowel contexts (‘all’). Error bars show ±1 standard deviation for the individual results and ±1 standard error of the mean for the group results. FT = frequency transposition; FC = frequency compression; RAU = rationalized arcsine unit.
Figure 5.
Figure 5.
S-test results for the group (top panel, ‘Average’) and for each participant. Error bars show ±1 standard deviation for the individual results and ±1 standard error of the mean for the group results. FT = frequency transposition; FC = frequency compression.
Figure 6.
Figure 6.
SRTs for speech in noise. Cross-hatched, dark gray, and light gray bars show the results for Control, FT, and FC, respectively. Lower SRTs indicate better performance. Error bars show ±1 standard deviation for the individual results and ±1 standard error of the mean for the group results. SRT = Speech reception threshold.
Figure 7.
Figure 7.
SSQ outcomes for the group (‘Average,’ top-left) and for each participant. Cross-hatched, dark gray, and light gray bars show results for Control, FT, and FC, respectively. Error bars show ±1 standard deviation for the individual results and ±1 standard error of the mean for the group results. FT = frequency transposition; FC = frequency compression.

References

    1. Aazh H., Moore B. C. J. (2007) Dead regions in the cochlea at 4 kHz in elderly adults: Relation to absolute threshold, steepness of audiogram, and pure tone average. Journal of the American Academy of Audiology 18: 96–107. doi:10.3766/jaaa.18.2.2.
    1. Alexander J. M. (2013) Individual variability in recognition of frequency-lowered speech. Seminars in Hearing 2: 86–109. doi:10.1055/s-0033-1341346.
    1. Alexander J. M. (2016) Nonlinear frequency compression: Influence of start frequency and input bandwidth on consonant and vowel recognition. Journal of the Acoustical Society of America 139: 938–957. doi:10.1121/1.4941916.
    1. Alexander J. M., Kopun J. G., Stelmachowicz P. G. (2014) Effects of frequency compression and frequency transposition on fricative and affricate perception in listeners with normal hearing and mild to moderate hearing loss. Ear and Hearing 35: 519–532. doi:10.1097/AUD.0000000000000040.
    1. Auriemmo J., Kuk F., Lau C., Marshall S., Thiele N., Pikora M., Stenger P. (2009) Effect of linear frequency transposition on speech recognition and production of school-age children. Journal of the American Academy of Audiology 20: 289–305. doi:10.3766/jaaa.20.5.2.
    1. Baer T., Moore B. C. J., Kluk K. (2002) Effects of lowpass filtering on the intelligibility of speech in noise for people with and without dead regions at high frequencies. Journal of the Acoustical Society of America 112: 1133–1144. doi:10.1121/1.1498853.
    1. Bentler R. A., Niebuhr D. P., Johnson T. A., Flamme G. A. (2003) Impact of digital labeling on outcome measures. Ear and Hearing 24: 215–224. doi:10.1097/01.AUD.0000069228.46916.92.
    1. Bohnert A., Nyffeler M., Keilmann A. (2010) Advantages of a non-linear frequency compression algorithm in noise. European Archives of Oto-Rhino-Laryngology 267: 1045–1053. doi:10.1007/s00405-009-1170-x.
    1. Braida L. D., Durlach N. I., Lippmann R. P., Hicks B. L., Rabinowitz W. M., Reed C. M. (1979) Hearing aids—A review of past research on linear amplification, amplitude compression, and frequency lowering. ASHA Monographs 19: 1–114.
    1. Brennan, M. A., McCreery, R., Kopun, J., Hoover, B., Alexander, J., Lewis, D., & Stelmachowicz, P. G. (2014). Paired comparisons of nonlinear frequency compression, extended bandwidth, and restricted bandwidth hearing aid processing for children and adults with hearing loss. Journal of the American Academy of Audiology, 25, 983–998. doi:10.3766/jaaa.25.10.7.
    1. British Society of Audiology (2007) Guidance on the use of real ear measurement to verify the fitting of digital signal processing hearing aids . Reading, England: Author. .
    1. British Society of Audiology (2011. a) Determination of uncomfortable loudness levels, Reading, England: Author.
    1. British Society of Audiology (2011. b) Pure tone air and bone conduction threshold audiometry with and without masking, Reading, England: Author.
    1. Burkhard M. D., Sachs R. M. (1975) Anthropometric manikin for acoustic research. Journal of the Acoustical Society of America 58: 214–222. doi:10.1121/1.380648.
    1. Ching T. Y. C., Johnson E. E., Seeto M., Macrae J. H. (2013) Hearing-aid safety: A comparison of estimated threshold shifts for gains recommended by NAL-NL2 and DSL m[i/o] prescriptions for children. International Journal of Audiology 52: S39–S45. doi:10.3109/14992027.2013.847976.
    1. Cox R. M., Alexander G. C., Johnson J., Rivera I. (2011) Cochlear dead regions in typical hearing aid candidates: Prevalence and implications for use of high-frequency speech cues. Ear and Hearing 32: 339–348. doi:10.1097/AUD.0b013e318202e982.
    1. Dawes P., Hopkins R., Munro K. J. (2013) Placebo effects in hearing-aid trials are reliable. International Journal of Audiology 52: 472–477. doi:10.3109/14992027.2013.783718.
    1. Dickinson A.-M., Baker R., Siciliano C., Munro K. J. (2014) Adaptation to nonlinear frequency compression in normal-hearing adults: A comparison of training approaches. International Journal of Audiology 53: 719–729. doi:10.3109/14992027.2014.921338.
    1. Ellis R. J., Munro K. J. (2015) Benefit from, and acclimatization to, frequency compression hearing aids in experienced adult hearing-aid users. International Journal of Audiology 54: 37–47. doi:10.3109/14992027.2014.948217.
    1. Finney D. J. (1971) Probit analysis, Cambridge, England: Cambridge University Press.
    1. Füllgrabe C., Baer T., Moore B. C. J. (2010) Effect of linear and warped spectral transposition on consonant identification by normal-hearing listeners with a simulated dead region. International Journal of Audiology 49: 420–433. doi:10.3109/14992020903505521.
    1. Gatehouse S., Noble W. (2004) The speech, spatial and qualities of hearing scale (SSQ). International Journal of Audiology 43: 85–99. doi:10.1080/14992020400050014.
    1. Gifford R. H., Dorman M. F., Spahr A. J., Bacon S. P. (2007) Auditory function and speech understanding in listeners who qualify for EAS surgery. Ear and Hearing 28: 114S–118S. doi:10.1097/AUD.0b013e3180315455.
    1. Gifford R. H., Dorman M. F., Spahr A. J., McKarns S. A. (2007) Effect of digital frequency compression (DFC) on speech recognition in candidates for combined electric and acoustic stimulation (EAS). Journal of Speech, Language and Hearing Research 50: 1194–1202. doi:10.1044/1092-4388(2007/083).
    1. Glasberg B. R., Moore B. C. J. (1990) Derivation of auditory filter shapes from notched-noise data. Hearing Research 47: 103–138. doi:10.1016/0378-5955(90)90170-T.
    1. Glista D., Scollie S. (2012) Development and evaluation of an english language measure of detection of word-final plurality markers: The University of Western Ontario Plurals Test. American Journal of Audiology 21: 76–81. doi:10.1044/1059-0889(2012/11-0036).
    1. Glista D., Scollie S., Bagatto M., Seewald R., Parsa V., Johnson A. (2009) Evaluation of nonlinear frequency compression: Clinical outcomes. International Journal of Audiology 48: 632–644. doi:10.1080/14992020902971349.
    1. Glista D., Scollie S., Sulkers J. (2012) Perceptual acclimatization post nonlinear frequency compression hearing aid fitting in older children. Journal of Speech, Language, and Hearing Research 55: 1765–1787. doi:10.1044/1092-4388(2012/11-0163).
    1. Hautus M. J. (1995) Corrections for extreme proportions and their biasing effects on estimated values of d′. Behavior Research Methods, Instruments, & Computers 27: 46–51. doi:10.3758/BF03203619.
    1. Hedrick M. (1997. a) Effect of acoustic cues on labeling fricatives and affricates. Journal of Speech, Language, and Hearing Research 40: 925–938. doi:10.1044/jslhr.4004.925.
    1. Hedrick M. (1997. b) Effect of relative amplitude manipulation on perception of voiceless fricatives by normal and impaired listeners. The Journal of the Acoustical Society of America 102: 3095–3095. doi:10.1121/1.420480.
    1. Hillock-Dunn A., Buss E., Duncan N., Roush P. A., Leibold L. (2014) Effects of nonlinear frequency compression on speech identification in children with hearing loss. Ear and Hearing 35: 353–365. doi:10.1097/AUD.0000000000000007.
    1. Hopkins K., Khanom M., Dickinson A.-M., Munro K. J. (2014) Benefit from non-linear frequency compression hearing aids in a clinical setting: The effects of duration of experience and severity of high-frequency hearing loss. International Journal of Audiology 53: 219–228. doi:10.3109/14992027.2013.873956.
    1. Hopkins K., Moore B. C. J., Stone M. A. (2008) Effects of moderate cochlear hearing loss on the ability to benefit from temporal fine structure information in speech. Journal of the Acoustical Society of America 123: 1140–1153. doi:10.1121/1.2824018.
    1. Huss M., Moore B. C. J. (2005. a) Dead regions and noisiness of pure tones. International Journal of Audiology 44: 599–611. doi:10.1080/02640410500243962.
    1. Huss M., Moore B. C. J. (2005. b) Dead regions and pitch perception. Journal of the Acoustical Society of America 117: 3841–3852. doi:10.1121/1.1920167.
    1. John A., Wolfe J., Scollie S., Schafer E., Hudson M., Woods W., Neumann S. (2014) Evaluation of wideband frequency responses and nonlinear frequency compression for children with cookie-bite audiometric configurations. Journal of the American Academy of Audiology 25: 1022–1033. doi:10.3766/jaaa.25.10.10.
    1. Johnson E. E., Light K. C. (2015) A patient-centered, provider-Facilitated approach to the refinement of nonlinear frequency compression parameters based on subjective preference ratings of amplified sound quality. Journal of the American Academy of Audiology 26: 689–702. doi:10.3766/jaaa.14053.
    1. Kluk K., Moore B. C. J. (2006) Detecting dead regions using psychophysical tuning curves: A comparison of simultaneous and forward masking. International Journal of Audiology 45: 463–476. doi:10.1080/14992020600753189.
    1. Kokx-Ryan, M., Cohen, J., Cord, M. T., Walden, T. C., Makashay, M. J., Sheffield, B. M., & Brungart, D. S. (2015). Benefits of nonlinear frequency compression in adult hearing aid users. Journal of the American Academy of Audiology, 26, 838–855. doi:10.3766/jaaa.15022.
    1. Korhonen P., Kuk F. (2008) Use of linear frequency transposition in simulated hearing loss. Journal of the American Academy of Audiology 19: 639–650. doi:10.3766/jaaa.19.8.7.
    1. Kuk F., Keenan D., Korhonen P., Lau C. C. (2009) Efficacy of linear frequency transposition on consonant identification in quiet and in noise. Journal of the American Academy of Audiology 20: 465–479. doi:10.3766/jaaa.20.8.2.
    1. Leijon A., Henter G. E., Dahlquist M. (2016) Bayesian analysis of phoneme confusion matrices. IEEE/ACM Transactions on Audio, Speech, and Language Processing 24: 469–482. doi:10.1109/TASLP.2015.2512039.
    1. Ling D. (1968) Three experiments on frequency transposition. American Annals of the Deaf 113: 283–294.
    1. Malicka A. N., Munro K. J., Baer T., Baker R. J., Moore B. C. J. (2013) The effect of low-pass filtering on identification of nonsense syllables in quiet by school-age children with and without cochlear dead regions. Ear and Hearing 34: 458–469. doi:10.1097/AUD.0b013e3182775982.
    1. Markessis E., Kapadia S., Munro K. J., Moore B. C. J. (2006) Modification of the TEN test for cochlear dead regions for use with steeply sloping high-frequency hearing loss. International Journal of Audiology 45: 91–98. doi:10.1080/14992020500376990.
    1. McDermott H. J., Dean M. R. (2000) Speech perception with steeply sloping hearing loss: Effects of frequency transposition. British Journal of Audiology 34: 353–361. doi:10.3109/03005364000000151.
    1. McNicol D. (2004) A primer of signal detection theory, Mahwah, NJ: Lawrence Erlbaum.
    1. Miller C. W., Bates E., Brennan M. (2016) The effects of frequency lowering on speech perception in noise with adult hearing-aid users. International Journal of Audiology 55: 305–312. doi:10.3109/14992027.2015.1137364.
    1. Miller G. A., Nicely P. E. (1955) An analysis of perceptual confusions among some English consonants. Journal of the Acoustical Society of America 27: 338–352. doi:10.1121/1.1907526.
    1. Miller-Hansen D. R., Nelson P. B., Widen J. E., Simon S. D. (2003) Evaluating the benefit of speech recoding hearing aids in children. American Journal of Audiology 12: 106–113. doi:10.1044/1059-0889(2003/018).
    1. Moore B. C. J. (2001) Dead regions in the cochlea: Diagnosis, perceptual consequences, and implications for the fitting of hearing aids. Trends in Amplification 5: 1–34. doi:10.1177/108471380100500102.
    1. Moore B. C. J. (2002) Dead regions in the cochlea: Implications for the choice of high-frequency amplification. In: Seewald R. C., Gravel J. S. (eds) A sound foundation through early amplification 2001, Stafa, Switzerland: Phonak AG, pp. 153–166.
    1. Moore B. C. J. (2003) An introduction to the psychology of hearing, 5th ed Bingley, England: Emerald.
    1. Moore B. C. J. (2004) Dead regions in the cochlea: Conceptual foundations, diagnosis, and clinical applications. Ear and Hearing 25: 98–116. doi:10.1097/01.AUD.0000120359.49711.D7.
    1. Moore B. C. J. (2007) Cochlear hearing loss: Physiological, psychological and technical issues, 2nd ed Chichester, England: Wiley.
    1. Moore B. C. J. (2012) An introduction to the psychology of hearing, 6th ed Leiden, The Netherlands: Brill.
    1. Moore B. C. J., Füllgrabe C. (2010) Evaluation of the CAMEQ2-HF method for fitting hearing aids with multi-channel amplitude compression. Ear and Hearing 31: 657–666. doi:10.1097/AUD.0b013e3181e1cd0d.
    1. Moore B. C. J., Glasberg B. R. (2004) A revised model of loudness perception applied to cochlear hearing loss. Hearing Research 188: 70–88. doi:10.1016/S0378-5955(03)00347-2.
    1. Moore B. C. J., Glasberg B. R., Stone M. A. (2004) New version of the TEN test with calibrations in dB HL. Ear and Hearing 25: 478–487. doi:10.1097/01.aud.0000145992.31135.89.
    1. Moore B. C. J., Glasberg B. R., Stone M. A. (2010) Development of a new method for deriving initial fittings for hearing aids with multi-channel compression: CAMEQ2-HF. International Journal of Audiology 49: 216–227. doi:10.3109/14992020903296746.
    1. Moore B. C. J., Stone M. A., Füllgrabe C., Glasberg B. R., Puria S. (2008) Spectro-temporal characteristics of speech at high frequencies, and the potential for restoration of audibility to people with mild-to-moderate hearing loss. Ear and Hearing 29: 907–922. doi:10.1097/AUD.0b013e31818246f6.
    1. Parent T. C., Chmiel R., Jerger J. (1997) Comparison of performance with frequency transposition hearing aids and conventional hearing aids. Journal of the American Academy of Audiology 8: 355–365.
    1. Parsa V., Scollie S., Glista D., Seelisch A. (2013) Nonlinear frequency compression: Effects on sound quality ratings of speech and music. Trends in Amplification 17: 54–68. doi:10.1177/1084713813480856.
    1. Pepler A., Lewis K., Munro K. J. (2016) Adult hearing-aid users with cochlear dead regions restricted to high frequencies: Implications for amplification. International Journal of Audiology 55: 20–29. doi:10.3109/14992027.2015.1074294.
    1. Pepler A., Munro K. J., Lewis K., Kluk K. (2014) Prevalence of cochlear dead regions in new referrals and existing adult hearing aid users. Ear and Hearing 35: e99–e109. doi:10.1097/AUD.0000000000000011.
    1. Perreau A. E., Bentler R. A., Tyler R. S. (2013) The contribution of a frequency-compression hearing aid to contralateral cochlear implant performance. Journal of the American Academy of Audiology 24: 105–120. doi:10.3766/jaaa.24.2.4.
    1. Picou E. M., Marcrum S. C., Ricketts T. A. (2015) Evaluation of the effects of nonlinear frequency compression on speech recognition and sound quality for adults with mild to moderate hearing loss. International Journal of Audiology 54: 162–169. doi:10.3109/14992027.2014.961662.
    1. Posen M. P., Reed C. M., Braida L. D. (1993) Intelligibility of frequency-lowered speech produced by a channel vocoder. Journal of Rehabiliation Research and Development 30: 26–38.
    1. Preminger J. E., Carpenter R., Ziegler C. H. (2005) A clinical perspective on cochlear dead regions: Intelligibility of speech and subjective hearing aid benefit. Journal of the American Academy of Audiology 16: 600–613. doi:10.3766/jaaa.16.8.9.
    1. Robinson, J. (2007). Evaluation of novel forms of frequency transposition for the hearing impaired (PhD thesis). University of Cambridge, Cambridge.
    1. Robinson J., Baer T., Moore B. C. J. (2007) Using transposition to improve consonant discrimination and detection for listeners with severe high-frequency hearing loss. International Journal of Audiology 46: 293–308. doi:10.1080/14992020601188591.
    1. Robinson J., Stainsby T. H., Baer T., Moore B. C. J. (2009) Evaluation of a frequency transposition algorithm using wearable hearing aids. International Journal of Audiology 48: 384–393. doi:10.1080/14992020902803138.
    1. Rothauser E. H., Chapman W. D., Guttman N., Silbiger H. R., Hecker M. H. L., Urbanek G. E., Weinstock M. (1969) IEEE recommended practice for speech quality measurements. IEEE Transactions on Audio and Electroacoustics 17: 225–246. doi:10.1109/TAU.1969.1162058.
    1. Salorio-Corbetto M., Baer T., Moore B. C. J. (2017. a) Evaluation of a frequency-lowering algorithm for adults with high-frequency hearing loss. Trends in Hearing 21: 1–23. doi:10.1177/2331216517734455.
    1. Salorio-Corbetto M., Baer T., Moore B. C. J. (2017. b) Quality ratings of frequency-compressed speech by participants with extensive high-frequency dead regions in the cochlea. International Journal of Audiology 56: 106–120. doi:10.1080/14992027.2016.1234071.
    1. Scollie S., Glista D., Seto J., Dunn A., Schuett B., Hawkins M., Parsa V. (2016) Fitting frequency-lowering signal processing applying the American Academy of Audiology Pediatric Amplification Guideline: Updates and protocols. Journal of the American Academy of Audiology 27: 219–236. doi:10.3766/jaaa.15059.
    1. Sek A., Moore B. C. J. (2011) Implementation of a fast method for measuring psychophysical tuning curves. International Journal of Audiology 50: 237–242. doi:10.3109/14992027.2010.550636.
    1. Shehorn J., Marrone N., Muller T. (2018) Speech perception in noise and listening effort of older adults with nonlinear frequency compression hearing aids. Ear and Hearing 39: 215–225. doi:10.1097/AUD.0000000000000481.
    1. Sherbecoe R. L., Studebaker G. A. (2004) Supplementary formulas and table for calculating and interconverting speech recognition scores in transformed acrsine units. International Journal of Audiology 43: 442–448. doi:10.1080/14992020400050056.
    1. Simpson A. (2009) Frequency-lowering devices for managing high-frequency hearing loss: A review. Trends in Amplification 13: 87–106. doi:10.1177/1084713809336421.
    1. Simpson A., Hersbach A. A., McDermott H. J. (2005) Improvements in speech perception with an experimental nonlinear frequency compression hearing device. International Journal of Audiology 44: 281–292. doi:10.1080/14992020500060636.
    1. Simpson A., Hersbach A. A., McDermott H. J. (2006) Frequency-compression outcomes in listeners with steeply sloping audiograms. International Journal of Audiology 45: 619–629. doi:10.1080/14992020600825508.
    1. Singh G., Pichora-Fuller K. M. (2010) Older adults’ performance on the speech, spatial, and qualities of hearing scale (SSQ): Test-retest reliability and a comparison of interview and self-administration methods. International Journal of Audiology 49: 733–740. doi:10.3109/14992027.2010.491097.
    1. Souza P. E., Arehart K. H., Kates J. M., Croghan N. B. H., Gehani N. (2013) Exploring the limits of frequency lowering. Journal of Speech, Language, and Hearing Research 56: 1349–1363. doi:10.1044/1092-4388(2013/12-0151).
    1. Vickers D. A., Moore B. C. J., Baer T. (2001) Effects of lowpass filtering on the intelligibility of speech in quiet for people with and without dead regions at high frequencies. Journal of the Acoustical Society of America 110: 1164–1175. doi:10.1121/1.1381534.
    1. Vickers D. A., Robinson J., Füllgrabe C., Baer T., Moore B. C. J. (2009) Relative importance of different spectral bands to consonant identification: Relevance for frequency transposition in hearing aids. International Journal of Audiology 48: 334–345. doi:10.1080/14992020802644889.
    1. Vinay, Moore B. C. J. (2007) Prevalence of dead regions in subjects with sensorineural hearing loss. Ear and Hearing 28: 231–241. doi:10.1097/AUD.0b013e31803126e2.
    1. Wolfe J., Duke M., Schafer E. C., Rehmann J., Jha S., Allegro Baumann S., Jones C. (2017) Preliminary evaluation of a novel non-linear frequency compression scheme for use in children. International Journal of Audiology 56: 976–988. doi: 10.1080/14992027.2017.1358467.
    1. Wolfe J., John A., Schafer E., Hudson M., Boretzki M., Scollie S., Neumann S. (2015) Evaluation of wideband frequency responses and non-linear frequency compression for children with mild to moderate high-frequency hearing loss. International Journal of Audiology 54: 170–181. doi:10.3109/14992027.2014.943845.
    1. Wolfe J., John A., Schafer E., Nyffeler M., Boretzki M., Caraway T. (2010) Evaluation of nonlinear frequency compression for school-age children with moderate to moderately severe hearing loss. Journal of the American Academy of Audiology 21: 618–628. doi:10.3766/jaaa.21.10.2.
    1. Wolfe, J., John, A., Schafer, E., Nyffeler, M., Boretzki, M., Caraway, T., & Hudson, M. (2011). Long-term effects of non-linear frequency compression for children with moderate hearing loss. International Journal of Audiology, 50, 396–404. doi:10.3109/14992027.2010.551788.

Source: PubMed

3
Prenumerera