Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance

M Laakso, S V Edelman, G Brechtel, A D Baron, M Laakso, S V Edelman, G Brechtel, A D Baron

Abstract

Obesity is characterized by decreased rates of skeletal muscle insulin-mediated glucose uptake (IMGU). Since IMGU equals the product of the arteriovenous glucose difference (AVGd) across muscle and blood flow into muscle, reduced blood flow and/or tissue activity (AVGd) can lead to decreased IMGU. To examine this issue, we studied six lean (weight 68 +/- 3 kg, mean +/- SEM) and six obese (94 +/- 3 kg) men. The insulin dose-response curves for whole body and leg IMGU were constructed using the euglycemic clamp and leg balance techniques over a large range of serum insulin concentrations. In lean and obese subjects, whole body IMGU, AVGd, blood flow, and leg IMGU increased in a dose dependent fashion and maximal rates of all parameters were reduced in obese subjects compared to lean subjects. The dose-response curves for whole body IMGU, leg IMGU, and AVGd were right-shifted in obese subjects with an ED50 two- to threefold higher than that of lean subjects for each parameter. Leg blood flow increased approximately twofold from basal 2.7 +/- 0.2 to 4.4 +/- 0.2 dl/min in lean, P less than 0.01, and from 2.5 +/- 0.3 to 4.4 +/- 0.4 dl/min in obese subjects, P less than 0.01. The ED50 for insulin's effect to increase leg blood flow was about fourfold higher for obese (957 pmol/liter) than lean subjects (266 pmol/liter), P less than 0.01. Therefore, decreased insulin sensitivity in human obesity is not only due to lower glucose extraction in insulin-sensitive tissues but also to lower blood flow to these tissues. Thus, in vivo insulin resistance can be due to a defect in insulin action at the tissue level and/or a defect in insulin's hemodynamic action to increase blood flow to insulin sensitive tissues.

References

    1. J Clin Invest. 1986 Aug;78(2):472-81
    1. J Clin Invest. 1982 Jun;69(6):1321-36
    1. Circulation. 1964 Jul;30:86-9
    1. J Clin Invest. 1987 Jul;80(1):1-6
    1. J Clin Endocrinol Metab. 1986 Sep;63(3):594-604
    1. Am J Physiol. 1988 Dec;255(6 Pt 1):E769-74
    1. Endocr Rev. 1985 Winter;6(1):45-86
    1. J Clin Invest. 1981 Oct;68(4):875-80
    1. J Clin Invest. 1988 Aug;82(2):486-94
    1. Am J Physiol. 1978 Aug;235(2):E97-102
    1. Diabetologia. 1987 Nov;30(11):841-5
    1. Am J Med. 1988 Nov 28;85(5A):86-105
    1. J Clin Invest. 1961 Dec;40(12):2111-25
    1. J Clin Invest. 1986 Oct;78(4):1051-5
    1. Diabetes. 1981 Oct;30(10):829-35
    1. J Clin Invest. 1987 Aug;80(2):415-24
    1. Am J Physiol. 1986 Oct;251(4 Pt 1):E422-30
    1. Am J Physiol. 1981 Jun;240(6):E630-9
    1. Diabetes. 1981 Dec;30(12):1000-7
    1. J Clin Invest. 1987 Jun;79(6):1713-9
    1. J Clin Invest. 1985 Apr;75(4):1106-15
    1. J Clin Invest. 1984 Oct;74(4):1515-25
    1. Am J Physiol. 1985 Mar;248(3 Pt 1):E286-91
    1. Diabetes. 1973 Jun;22(6):442-58
    1. Diabetes. 1987 Nov;36(11):1341-50
    1. Metabolism. 1988 Jan;37(1):15-21
    1. J Clin Invest. 1988 May;81(5):1528-36
    1. Diabetes. 1988 Jun;37(6):667-87
    1. J Pharmacol Exp Ther. 1985 Dec;235(3):709-14
    1. Am J Med. 1981 Jan;70(1):151-68
    1. J Lipid Res. 1965 Jan;6:16-20
    1. J Clin Endocrinol Metab. 1971 Nov;33(5):732-8
    1. J Appl Physiol (1985). 1989 Feb;66(2):876-85
    1. Diabetes. 1982 Nov;31(11):957-63
    1. J Clin Invest. 1980 Jun;65(6):1272-84
    1. J Clin Invest. 1989 Nov;84(5):1620-8
    1. Circ Res. 1986 Nov;59(5):483-95
    1. Diabetologia. 1981;20(1):39-44
    1. Clin Physiol. 1985 Jun;5(3):201-29
    1. Diabetes. 1983 Jan;32(1):35-45
    1. Diabetes. 1965 Oct;14(10):672-4
    1. Am J Physiol. 1979 Sep;237(3):E214-23
    1. J Clin Invest. 1985 Jul;76(1):357-64
    1. J Clin Endocrinol Metab. 1986 Sep;63(3):541-9
    1. J Clin Invest. 1962 Dec;41:2173-81
    1. Diabetes. 1987 Aug;36(8):914-24
    1. J Clin Endocrinol Metab. 1988 Sep;67(3):532-40

Source: PubMed

3
Prenumerera