SMN1 and SMN2 copy numbers in cell lines derived from patients with spinal muscular atrophy as measured by array digital PCR

Deborah L Stabley, Ashlee W Harris, Jennifer Holbrook, Nicholas J Chubbs, Kevin W Lozo, Thomas O Crawford, Kathryn J Swoboda, Vicky L Funanage, Wenlan Wang, William Mackenzie, Mena Scavina, Katia Sol-Church, Matthew E R Butchbach, Deborah L Stabley, Ashlee W Harris, Jennifer Holbrook, Nicholas J Chubbs, Kevin W Lozo, Thomas O Crawford, Kathryn J Swoboda, Vicky L Funanage, Wenlan Wang, William Mackenzie, Mena Scavina, Katia Sol-Church, Matthew E R Butchbach

Abstract

Proximal spinal muscular atrophy (SMA) is an early-onset motor neuron disease characterized by loss of α-motor neurons and associated muscle atrophy. SMA is caused by deletion or other disabling mutation of survival motor neuron 1 (SMN1). In the human genome, a large duplication of the SMN-containing region gives rise to a second copy of this gene (SMN2) that is distinguishable by a single nucleotide change in exon 7. Within the SMA population, there is substantial variation in SMN2 copy number; in general, those individuals with SMA who have a high SMN2 copy number have a milder disease. Because SMN2 functions as a disease modifier, its accurate copy number determination may have clinical relevance. In this study, we describe the development of an assay to assess SMN1 and SMN2 copy numbers in DNA samples using an array-based digital PCR (dPCR) system. This dPCR assay can accurately and reliably measure the number of SMN1 and SMN2 copies in DNA samples. In a cohort of SMA patient-derived cell lines, the assay confirmed a strong inverse correlation between SMN2 copy number and disease severity. Array dPCR is a practical technique to determine, accurately and reliably, SMN1 and SMN2 copy numbers from SMA samples.

Keywords: Array digital PCR; SMN1; SMN2; copy number; copy number variation; spinal muscular atrophy.

Figures

Figure 1
Figure 1
Workflow for SMN1/SMN2 copy number assays, using the QuantStudio 3D array dPCR system.
Figure 2
Figure 2
Comparison of SMN2 copy number in SMA samples determined by qPCR to that by array dPCR. The dashed line represents the linear relationship between SMN2 copy number determined by TaqMan™ qPCR (Gómez-Curet et al., 2007) and that determined by array dPCR.
Figure 3
Figure 3
SMN2 copy number in SMA samples. (A) Distribution of SMN2 copy number in the SMA patient samples (n = 60). (B) Relationship between SMN2 copy number and disease severity in SMN1-deleted SMA samples (n = 59). Each bar represents a clinical grade of SMA. The distribution of SMN2 copy numbers (1 SMN2, red; 2 SMN2, orange; 3 SMN2, yellow and 4 SMN2, green) within each clinical grade is shown within each bar.
Figure 4
Figure 4
SMN1 and SMN2 copy numbers in non-SMA samples. Each bar represents a copy number for SMN1 in the cohort of non-SMA samples (n = 40). The distribution of SMN2 copy numbers (0 SMN2, purple; 1 SMN2, red; 2 SMN2, orange; 3 SMN2, yellow and 5 SMN2, green) within each SMN1 copy number is shown within each bar. None of the samples in our cohort contained 4 copies of SMN2.

References

    1. Anhuf D, Eggermann T, Rudnik-Schöneborn S. Zerres K. Determination of SMN1 and SMN2 copy number using TaqMan technology. Hum. Mutat. 2003;22:74–78.
    1. Baer M, Nilsen TW, Costigan C. Altman S. Structure and transcription of a human gene for H1 RNA, the RNA component of human RNase P. Nucleic Acids Res. 1990;18:97.
    1. Ben-Shachar S, Orr-Urtreger A, Bardugo E, Shomrat R. Yaron Y. Large-scale population screening for spinal muscular atrophy: clinical implications. Genet. Med. 2011;13:110–114.
    1. Burnett BG, Muñoz E, Tandon A, Kwon DY, Sumner CJ. Fischbeck KH. Regulation of SMN protein stability. Mol. Cell. Biol. 2009;29:1107–1115.
    1. Coovert DD, Le TT, McAndrew PE, Strasswimmer J, Crawford TO, Mendell JR, Coulson SE, Androphy EJ, Prior TW. Burghes AHM. The survival motor neuron protein in spinal muscular atrophy. Hum. Mol. Genet. 1997;6:1205–1214.
    1. Crawford TO. Pardo CA. The neurobiology of childhood spinal muscular atrophy. Neurobiol. Dis. 1996;3:97–110.
    1. Crawford TO, Paushkin S, Kobayashi DT, Forrest SJ, Joyce CL, Finkel RS, Kaufmann P, Swoboda KJ, Tiziano F, Lomastro R, Li RH, Trachtenberg FL, et al. Evaluation of SMN protein, transcript and copy number in the biomarkers for spinal muscular atrophy (BforSMA) clinical study. PLoS ONE. 2012;7:e33572.
    1. Cuscó I, Barceló MJ, Soler C, Parra J, Baiget M. Tizzano E. Prenatal diagnosis for risk of spinal muscular atrophy. Br. J. Obstet. Gynaecol. 2002;109:1244–1249.
    1. Day E, Dear PH. McCaughan F. Digital PCR strategies in the development and analysis of molecular biomarkers for personalized medicine. Methods. 2013;59:101–107.
    1. Dobrowolski SF, Pham HT, Pouch-Downes F, Prior TW, Naylor EW. Swoboda KJ. Newborn screening for spinal muscular atrophy by calibrated short-amplicon melt profiling. Clin. Chem. 2012;58:1033–1039.
    1. Elsheikh B, Prior T, Zhang X, Miller R, Kolb SJ, Moore D, Bradley W, Barohn R, Bryan W, Gelinas D, Iannaccone S, Leshner R, et al. An analysis of disease severity based on SMN2 copy number in adults with spinal muscular atrophy. Muscle Nerve. 2009;40:652–656.
    1. Feldkötter M, Schwarzer V, Wirth R, Wienker TF. Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time LightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am. J. Hum. Genet. 2002;70:358–368.
    1. Gérard B, Ginet N, Matthijs G, Evrard P, Baumann C, Da Silva F, Gérard-Blanleut M, Mayer M, Grandchamp B. Elion J. Genotype determination at the survival motor neuron locus in a normal population and SMA carriers using competitive PCR and primer extension. Hum. Mutat. 2004;16:253–263.
    1. Gómez-Curet I, Robinson KG, Funanage VL, Crawford TO, Scavina M. Wang W. Robust quantification of the SMN gene copy number by real-time TaqMan PCR. Neurogenetics. 2007;8:271–278.
    1. Hendrickson BC, Donohoe C, Akmaev VR, Sugarman EA, Labrousse P, Boguslavskiy L, Flynn K, Rohlfs EM, Walker A, Allitto B, Sears C. Scholl T. Differences in SMN1 allele frequencies among ethnic groups within North America. J. Med. Genet. 2009;46:641–644.
    1. Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH. Li H. A mouse model for spinal muscular atrophy. Nat. Genet. 2000;24:66–70.
    1. Huang CH, Chang YY, Chen CH, Kuo YS, Hwu WL, Gerdes T. Ko TM. Copy number analysis of survival motor neuron genes by multiplex ligation-dependent probe amplification. Genet. Med. 2007;9:241–248.
    1. Kaufmann P, McDermott MP, Darras BT, Finkel R, Kang P, Oskoui M, Constantinescu A, Sproule DM, Foley AR, Yang M, Tawil R, Chung W, et al. Observational study of spinal muscular atrophy type 2 and 3. Functional outcomes over 1 year. Arch. Neurol. 2011;68:779–786.
    1. Kaufmann P, McDermott MP, Darras BT, Finkel RS, Sproule DM, Kang PB, Oskoui M, Constantinescu A, Gooch CL, Foley AR, Yang ML, Tawil R, et al. Prospective cohort study of spinal muscular atrophy types 2 and 3. Neurology. 2012;79:1889–1897.
    1. Kirwin SM, Vinette KMB, Gonzalez IL, Al Abdulwahed H, Al-Sannaa N. Funanage VL. A homozygous double mutation in SMN1: a complicated genetic diagnosis of SMA. Mol. Genet. Genomic Med. 2013;1:113–117.
    1. Labrum R, Rodda J. Krause A. The molecular basis of spinal muscular atrophy (SMA) in South African black patients. Neuromuscul. Disord. 2007;17:684–692.
    1. Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Le Paslier D, Frézal J, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80:155–165.
    1. Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, Dreyfuss G. Melki J. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet. 1997;16:265–269.
    1. Lorson CL. Androphy EJ. An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum. Mol. Genet. 2000;9:259–265.
    1. Lorson CL, Hahnen E, Androphy EJ. Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA. 1999;96:6307–6311.
    1. Lyahyai J, Sbiti A, Barkat A, Ratbi I. Sefiani A. Spinal muscular atrophy carrier frequency and estimated prevalence of the disease in Moroccan newborns. Genet. Test Mol. Biomark. 2012;16:215–218.
    1. McAndrew PE, Parsons DW, Simard LR, Rochette C, Ray PN, Mendell JR, Prior TW. Burghes AHM. Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am. J. Hum. Genet. 1997;60:1411–1422.
    1. Michaud M, Arnoux T, Bielli S, Durand E, Rotrou Y, Jablonka S, Robert F, Giraudon-Paoli M, Riessland M, Mattei MG, Andriambeloson E, Wirth B, et al. Neuromuscular defects and breathing disorders in a new mouse model of spinal muscular atrophy. Neurobiol. Dis. 2010;38:125–135.
    1. Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AHM. McPherson JD. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum. Mol. Genet. 1999;8:1177–1183.
    1. Monani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT, Jablonka S, Schrank B, Rossoll W, Prior TW, Morris GE. Burghes AHM. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn-/- mice and results in a mouse with spinal muscular atrophy. Hum. Mol. Genet. 2000;9:333–339.
    1. Nurputra DK, Lai PS, Harahap NIF, Morikawa S, Yamamoto T, Nishimura N, Kubo Y, Takeuchi A, Saito T, Takeshima Y, Tohyama Y, Tay SKH, et al. Spinal muscular atrophy: from gene discovery to clinical trials. Ann. Hum. Genet. 2013;77:435–463.
    1. Parsons DW, McAndrew PE, Iannaccone ST, Mendell JR, Burghes AHM. Prior TW. Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect and modification of the spinal muscular atrophy phenotype by cenSMN copy number. Am. J. Hum. Genet. 1998;63:1712–1723.
    1. Pearn J. Incidence, prevalence and gene frequency studies of chronic childhood spinal muscular atrophy. J. Med. Genet. 1978;15:409–413.
    1. Prior TW, Krainer AR, Hua Y, Swoboda KJ, Snyder PC, Bridgeman SJ, Burghes AHM. Kissel JT. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am. J. Hum. Genet. 2009;85:408–413.
    1. Prior TW, Nagan N, Sugarman EA, Batish SD. Braastad C. Technical standards and guidelines for spinal muscular atrophy testing. Genet. Med. 2011;13:686–694.
    1. Prior TW, Swoboda KJ, Scott HD. Hejmanowski AQ. Homozygous SMN1 deletions in unaffected family members and modification of the phenotype by SMN2. Am. J. Med. Genet. 2005;130A:307–310.
    1. Pyatt RE. Prior TW. A feasibility study for the newborn screening of spinal muscular atrophy. Genet. Med. 2006;8:428–437.
    1. Rudnik-Schöneborn S, Berg C, Zerres K, Betzler C, Grimm T, Eggermann T, Eggermann K, Wirth R, Wirth B. Heller R. Genotype-phenotype studies in infantile spinal muscular atrophy (SMA) type I in Germany: implications for clinical trials and genetic counseling. Clin. Genet. 2009;76:168–178.
    1. Sangaré M, Hendrickson B, Sango HA, Chen K, Nofziger J, Amara A, Dutra A, Schindler AB, Guindo A, Traoré M, Harmison G, Pak E, et al. Genetics of low spinal muscular atrophy carrier frequency in sub-Saharan Africa. Ann. Neurol. 2014;75:525–532.
    1. Su YN, Hung CC, Li H, Lee CN, Cheng WF, Tsao PN, Chang MC, Yu CL, Hsieh WS, Lin WL. Hsu SM. Quantitative analysis of SMN1 and SMN2 genes based on DHPLC: a highly efficient and reliable carrier-screening test. Hum. Mutat. 2005;25:460–467.
    1. Su YN, Hung CC, Lin SY, Chen FY, Chern JPS, Tsai C, Chang TS, Yang CC, Li H, Ho HN. Lee CN. Carrier screening for spinal muscular atrophy (SMA) in 107,611 pregnant women during the period 2005-2009: a prospective population-based cohort study. PLoS ONE. 2011;6:e17067.
    1. Sugarman EA, Nagan N, Zhu H, Akmaev VR, Zhou Z, Rohlfs AM, Flynn K, Hendrickson BC, Scholl T, Sirko-Osadsa DA. Allitto BA. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72400 specimens. Eur. J. Hum. Genet. 2012;20:27–32.
    1. Swoboda KJ, Prior TW, Scott CB, McNaught TP, Wride MC, Reyna SP. Bromberg MB. Natural history of denervation in SMA: relation to age, SMN2 copy number and function. Ann. Neurol. 2005;57:704–712.
    1. Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J. Morley AA. Quantitation of targets for PCR by use of limiting dilution. Biotechniques. 1992;13:444–449.
    1. Tiziano FD, Bertini E, Messina S, Angelozzi C, Pane M, D’Amico A, Alfieri P, Fiori S, Battini R, Berardinelli A, Boffi P, Bruno C, et al. The Hammersmith functional score correlates with the SMN2 copy number: a multicentric study. Neuromuscul. Disord. 2007;17:400–403.
    1. van der Steege G, Grootscholten PM, van der Vlies P, Draaijers TG, Osinga J, Cobben JM, Scheffer H. Buys CHCM. PCR-based DNA test to confirm clinical diagnosis of autosomal recessive spinal muscular atrophy. Lancet. 1995;345:985–986.
    1. Vezain M, Saukkonen AM, Goina E, Touraine R, Manel V, Toutain A, Fehrenbach S, Frébourg T, Pagani F, Tosi M. Martins A. A rare SMN2 variant in a previously unrecognized composite splicing regulatory element induces exon 7 inclusion and reduces the clinical severity of spinal muscular atrophy. Hum. Mutat. 2010;31:E1110–E1125.
    1. Villegas J. McPhaul M. Establishment and culture of human skin fibroblasts. Curr. Protoc. Mol. Biol. 2005;Unit 28.3:28.3.1–28.3.9.
    1. Vogelstein B. Kinzler KW. Digital PCR. Proc Natl Acad Sci USA. 1999;96:9236–9241.
    1. Whale AS, Huggett JF, Cowen S, Speirs V, Shaw J, Ellison S, Foy CA. Scott DJ. Comparison of microfluidic digital PCR and conventational quantitative PCR for measuring copy number variation. Nucleic Acids Res. 2014;40:e82.
    1. Wirth B, Brichta L, Schrank B, Lochmüller H, Blick S, Baasner A. Heller R. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum. Genet. 2006;119:422–428.
    1. Zaldívar T, Montejo Y, Acevedo AM, Guerra R, Vargas J, Garofalo N, Alvarez R, Alvarez MA. Hardiman O. Evidence of reduced frequency of spinal muscular atrophy type I in the Cuban population. Neurology. 2005;65:636–638.
    1. Zhong Q, Bhattacharya S, Kotsopoulos S, Olson J, Taly V, Griffiths AD, Link DR. Larson JW. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip. 2011;11:2167–2174.

Source: PubMed

3
Prenumerera