Repeat Rifaximin for Irritable Bowel Syndrome: No Clinically Significant Changes in Stool Microbial Antibiotic Sensitivity

M Pimentel, B D Cash, A Lembo, R A Wolf, R J Israel, P Schoenfeld, M Pimentel, B D Cash, A Lembo, R A Wolf, R J Israel, P Schoenfeld

Abstract

Background: Rifaximin has demonstrated efficacy and safety for diarrhea-predominant irritable bowel syndrome (IBS-D).

Aim: To determine the rifaximin repeat treatment effect on fecal bacterial antibiotic susceptibility.

Methods: Patients with IBS in Trial 3 (TARGET 3) study who responded to open-label rifaximin 550 mg three times daily for 2 weeks, with symptom recurrence within 18 weeks, were randomized to double-blind treatment: two 2-week repeat courses of rifaximin or placebo, separated by 10 weeks. Prospective stool sample collection occurred before and after open-label rifaximin, before and after the first repeat course, and at the end of the study. Susceptibility testing was performed with 11 antibiotics, including rifaximin and rifampin, using broth microdilution or agar dilution methods.

Results: Of 103 patients receiving open-label rifaximin, 73 received double-blind rifaximin (n = 37) or placebo (n = 36). A total of 1429 bacterial and yeast isolates were identified, of which Bacteroidaceae (36.7%) and Enterobacteriaceae (33.9%) were the most common. In the double-blind phase, Clostridium difficile was highly susceptible to rifaximin [minimum inhibitory concentration (MIC) range 0.008-1 µg/mL] and rifampin (MIC range 0.004-0.25 µg/mL). Following double-blind rifaximin treatment, Staphylococcus isolates remained susceptible to rifaximin at all visits (MIC50 range ≤0.06-32 µg/mL). Rifaximin exposure was not associated with long-term cross-resistance of Bacteroidaceae, Enterobacteriaceae, and Enterococcaceae to rifampin or nonrifamycin antibiotics tested.

Conclusions: In this study, short-term repeat treatment with rifaximin has no apparent long-term effect on stool microbial susceptibility to rifaximin, rifampin, and nonrifamycin antibiotics. CLINICALTRIALS.

Gov identifier: NCT01543178.

Keywords: Diarrhea; Irritable bowel syndrome; Microbiology; Rifaximin.

Conflict of interest statement

Conflict of interest

M. Pimentel reports serving as a consultant for and receiving research funding from Salix Pharmaceuticals. In addition, Cedars-Sinai Medical Center has a licensing agreement with Salix Pharmaceuticals. B.D. Cash reports serving as a speaker, consultant, and an advisory board member for Salix Pharmaceuticals. A. Lembo reports serving as a consultant and an advisory board member for Salix Pharmaceuticals, Ironwood Pharmaceuticals, Inc., Allergan plc, Ardelyx, and Valeant Pharmaceuticals. R.A. Wolf is a former employee of Salix Pharmaceuticals. R.J. Israel is an employee of Salix Pharmaceuticals or its affiliates. P. Schoenfeld reports serving as a consultant and advisory board member for Salix Pharmaceuticals, Ironwood Pharmaceuticals, Allergan, and Commonwealth Laboratories, a division of Valeant Pharmaceuticals North America LLC.

Ethical standards

All procedures performed in the study were in accordance with the International Standard of Good Clinical Practice procedures and with the principles of the Declaration of Helsinki (1964) and relevant amendments. The protocol was approved by all institutional review boards and ethics committees at participating sites.

References

    1. Lacy BE, Mearin F, Chang L, et al. Bowel disorders. Gastroenterology. 2016;150:1393–1407. doi: 10.1053/j.gastro.2016.02.031.
    1. Chey WD, Kurlander J, Eswaran S. Irritable bowel syndrome: a clinical review. JAMA. 2015;313:949–958. doi: 10.1001/jama.2015.0954.
    1. Carroll IM, Chang YH, Park J, Sartor RB, Ringel Y. Luminal and mucosal-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Gut Pathog. 2010;2:19. doi: 10.1186/1757-4749-2-19.
    1. Shankar V, Homer D, Rigsbee L, et al. The networks of human gut microbe-metabolite associations are different between health and irritable bowel syndrome. ISME J. 2015;9:1899–1903. doi: 10.1038/ismej.2014.258.
    1. Rigsbee L, Agans R, Shankar V, et al. Quantitative profiling of gut microbiota of children with diarrhea-predominant irritable bowel syndrome. Am J Gastroenterol. 2012;107:1740–1751. doi: 10.1038/ajg.2012.287.
    1. Rajilic-Stojanovic M, Biagi E, Heilig HG, et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology. 2011;141:1792–1801. doi: 10.1053/j.gastro.2011.07.043.
    1. Ford AC, Moayyedi P, Lacy BE, et al. American College of Gastroenterology monograph on the management of irritable bowel syndrome and chronic idiopathic constipation. Am J Gastroenterol. 2014;109:S2–S26. doi: 10.1038/ajg.2014.187.
    1. Pimentel M, Chow EJ, Lin HC. Normalization of lactulose breath testing correlates with symptom improvement in irritable bowel syndrome. a double-blind, randomized, placebo-controlled study. Am J Gastroenterol. 2003;98:412–419. doi: 10.1111/j.1572-0241.2003.07946.x.
    1. Pimentel M, Chatterjee S, Chow EJ, Park S, Kong Y. Neomycin improves constipation-predominant irritable bowel syndrome in a fashion that is dependent on the presence of methane gas: subanalysis of a double-blind randomized controlled study. Dig Dis Sci. 2006;51:1297–1301. doi: 10.1007/s10620-006-9104-6.
    1. Basseri RJ, Weitsman S, Barlow GM, Pimentel M. Antibiotics for the treatment of irritable bowel syndrome. Gastroenterol Hepatol. 2011;7:455–493.
    1. Cash BD. Emerging role of probiotics and antimicrobials in the management of irritable bowel syndrome. Curr Med Res Opin. 2014;30:1405–1415. doi: 10.1185/03007995.2014.908278.
    1. Blondeau JM. What have we learned about antimicrobial use and the risks for Clostridium difficile-associated diarrhoea? J Antimicrob Chemother. 2009;63:238–242. doi: 10.1093/jac/dkn477.
    1. Jiang ZD, DuPont HL. Rifaximin: in vitro and in vivo antibacterial activity—a review. Chemotherapy. 2005;51:67–72. doi: 10.1159/000081991.
    1. Marchese A, Salerno A, Pesce A, Debbia EA, Schito GC. In vitro activity of rifaximin, metronidazole and vancomycin against Clostridium difficile and the rate of selection of spontaneously resistant mutants against representative anaerobic and aerobic bacteria, including ammonia-producing species. Chemotherapy. 2000;46:253–266. doi: 10.1159/000007297.
    1. Gillis JC, Brogden RN. Rifaximin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic potential in conditions mediated by gastrointestinal bacteria. Drugs. 1995;49:467–484. doi: 10.2165/00003495-199549030-00009.
    1. Xifaxan® (rifaximin) tablets, for oral use [package insert]. Bridgewater, NJ: Salix Pharmaceuticals; 2015.
    1. Pimentel M, Lembo A, Chey WD, et al. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med. 2011;364:22–32. doi: 10.1056/NEJMoa1004409.
    1. Meyrat P, Safroneeva E, Schoepfer AM. Rifaximin treatment for the irritable bowel syndrome with a positive lactulose hydrogen breath test improves symptoms for at least 3 months. Aliment Pharmacol Ther. 2012;36:1084–1093. doi: 10.1111/apt.12087.
    1. Pimentel M, Park S, Mirocha J, Kane SV, Kong Y. The effect of a nonabsorbed oral antibiotic (rifaximin) on the symptoms of the irritable bowel syndrome: a randomized trial. Ann Intern Med. 2006;145:557–563. doi: 10.7326/0003-4819-145-8-200610170-00004.
    1. Pimentel M, Morales W, Chua K, et al. Effects of rifaximin treatment and retreatment in nonconstipated IBS subjects. Dig Dis Sci. 2011;56:2067–2072. doi: 10.1007/s10620-011-1728-5.
    1. Lembo A, Pimentel M, Rao SS, et al. Repeat treatment with rifaximin is safe and effective in patients with diarrhea-predominant irritable bowel syndrome. Gastroenterology. 2016;151:1113–1121. doi: 10.1053/j.gastro.2016.08.003.
    1. Schoenfeld P, Pimentel M, Chang L, et al. Safety and tolerability of rifaximin for the treatment of irritable bowel syndrome without constipation: a pooled analysis of randomised, double-blind, placebo-controlled trials. Aliment Pharmacol Ther. 2014;39:1161–1168. doi: 10.1111/apt.12735.
    1. Taylor DN, McKenzie R, Durbin A, Carpenter C, Haake R, Bourgeois AL. Systemic pharmacokinetics of rifaximin in volunteers with shigellosis. Antimicrob Agents Chemother. 2008;52:1179–1181. doi: 10.1128/AAC.01108-07.
    1. Descombe JJ, Dubourg D, Picard M, Palazzini E. Pharmacokinetic study of rifaximin after oral administration in healthy volunteers. Int J Clin Pharmacol Res. 1994;14:51–56.
    1. Kothary V, Scherl EJ, Bosworth B, et al. Rifaximin resistance in Escherichia coli associated with inflammatory bowel disease correlates with prior rifaximin use, mutations in rpoB, and activity of phe-arg-b-naphthylamide-inhibitable efflux pumps. Antimicrob Agents Chemother. 2013;57:811–817. doi: 10.1128/AAC.02163-12.
    1. De Leo C, Eftimiadi C, Schito GC. Rapid disappearance from the intestinal tract of bacteria resistant to rifaximin. Drugs Exp Clin Res. 1986;12:979–981.
    1. Brigidi P, Swennen E, Rizzello F, Bozzolasco M, Matteuzzi D. Effects of rifaximin administration on the intestinal microbiota in patients with ulcerative colitis. J Chemother. 2002;14:290–295. doi: 10.1179/joc.2002.14.3.290.
    1. Ruiz J, Mensa L, Pons MJ, Vila J, Gascon J. Development of Escherichia coli rifaximin-resistant mutants: frequency of selection and stability. J Antimicrob Chemother. 2008;61:1016–1019. doi: 10.1093/jac/dkn078.
    1. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement, CLSI document M100-S24. Wayne, PA; 2014.
    1. Mullen KD, Sanyal AJ, Bass NM, et al. Rifaximin is safe and well tolerated for long-term maintenance of remission from overt hepatic encephalopathy. Clin Gastroenterol Hepatol. 2014;12:1390–1397. doi: 10.1016/j.cgh.2013.12.021.
    1. Bass NM, Mullen KD, Sanyal A, et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med. 2010;362:1071–1081. doi: 10.1056/NEJMoa0907893.
    1. Bajaj JS, Barrett AC, Bortey E, Paterson C, Forbes WP. Prolonged remission from hepatic encephalopathy with rifaximin: results of a placebo crossover analysis. Aliment Pharmacol Ther. 2015;41:39–45. doi: 10.1111/apt.12993.
    1. DuPont HL, Jiang ZD, Okhuysen PC, et al. A randomized, double-blind, placebo-controlled trial of rifaximin to prevent travelers’ diarrhea. Ann Intern Med. 2005;142:805–812. doi: 10.7326/0003-4819-142-10-200505170-00005.
    1. DuPont HL, Jiang ZD. Influence of rifaximin treatment on the susceptibility of intestinal Gram-negative flora and Enterococci. Clin Microbiol Infect. 2004;10:1009–1011. doi: 10.1111/j.1469-0691.2004.00997.x.
    1. Finegold SM, Molitoris D, Vaisanen ML. Study of the in vitro activities of rifaximin and comparator agents against 536 anaerobic intestinal bacteria from the perspective of potential utility in pathology involving bowel flora. Antimicrob Agents Chemother. 2009;53:281–286. doi: 10.1128/AAC.00441-08.
    1. Sakata H, Fujita K, Yoshioka H. The effect of antimicrobial agents on fecal flora of children. Antimicrob Agents Chemother. 1986;29:225–229. doi: 10.1128/AAC.29.2.225.
    1. Samonis G, Gikas A, Anaissie EJ, et al. Prospective evaluation of effects of broad-spectrum antibiotics on gastrointestinal yeast colonization of humans. Antimicrob Agents Chemother. 1993;37:51–53. doi: 10.1128/AAC.37.1.51.
    1. Clayton EM, Rea MC, Shanahan F, et al. Carriage of Clostridium difficile in outpatients with irritable bowel syndrome. J Med Microbiol. 2012;61:1290–1294. doi: 10.1099/jmm.0.040568-0.
    1. Rajilic-Stojanovic M, Smidt H, de Vos WM. Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol. 2007;9:2125–2136. doi: 10.1111/j.1462-2920.2007.01369.x.
    1. Carroll IM, Ringel-Kulka T, Keku TO, et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2011;301:G799–G807. doi: 10.1152/ajpgi.00154.2011.

Source: PubMed

3
Prenumerera