Effect of HIIT with Tabata Protocol on Serum Irisin, Physical Performance, and Body Composition in Men

Eugenia Murawska-Cialowicz, Pawel Wolanski, Jolanta Zuwala-Jagiello, Yuri Feito, Miroslav Petr, Jakub Kokstejn, Petr Stastny, Dawid Goliński, Eugenia Murawska-Cialowicz, Pawel Wolanski, Jolanta Zuwala-Jagiello, Yuri Feito, Miroslav Petr, Jakub Kokstejn, Petr Stastny, Dawid Goliński

Abstract

High-intensity interval training (HIIT) is frequently utilized as a method to reduce body mass. Its intensity of work results in a number of beneficial adaptive changes in a relatively short period of time. Irisin is a myokine and adipokine secreted to the blood during exercise and it takes part in the regulation of energy metabolism. It is a vital issue from the prophylaxis point of view as well as treatment through exercise of different diseases (e.g., obesity, type-2 diabetes). The aim of this study was to evaluate changes in irisin concentration, body composition, and aerobic and anaerobic performance in men after HIIT. Eight weeks of HIIT following the Tabata protocol was applied in the training group (HT) (n = 15), while a sedentary group (SED) (n = 10) did not participate in fitness activities within the same time period. Changes of irisin, body composition, and aerobic and anaerobic performance were evaluated after graded exercise test (GXT) and Wingate anaerobic test (WAnT) before and after eight weeks of training. Training resulted in an increased of blood irisin concentration (by 29.7%) p < 0.05), VO2max increase (PRE: 44.86 ± 5.74 mL·kg-1·min-1; POST: 50.16 ± 5.80 mL kg-1·min-1; p < 0.05), reduction in percent body fat (PRE: 14.44 ± 3.33%; POST: 13.61 ± 3.16%; p < 0.05), and increase of WAnT parameters (p < 0.05) in the HT group. No changes were observed in the SED group. HIIT resulted in beneficial effects in the increase in blood irisin concentration, physical performance, and reduced fat content. The HIIT may indicate an acceleration of base metabolism. This effect can be utilized in the prevention or treatment of obesity.

Keywords: HIIT; basal metabolism; fat reduction; fitness; health; irisin; lean body mass; power output.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Scheme of the training sessions. LA = Lactate, ABB = Acid–Base Balance, BM = Body mass.
Figure 2
Figure 2
Mean intensity of eight sets in each training session during eight weeks training expressed as % HRmax. (AH) present the intensity of all eight training sets during the first session in the week (black circle) and second session in the week (dotted square) * p < 0.05 in comparison to the same sets during the first training session (Student’s t-test). HR = hart rate.
Figure 3
Figure 3
Mean lactate level after two training sessions in each training week and mean % HRmax of the two training sessions in each training week. * p < 0.05 in comparison to lactate after the first; second; sixth; seventh training weeks; ** p < 0.005 in comparison to the third week; # p < 0.01 in comparison to the first; second; sixth and seventh weeks of training (Student’s t-test for dependent values). LA = lactate, HR = heart rate.
Figure 4
Figure 4
Irisin level in HT and sedentary group at the baseline and after eight weeks; * p < 0.05 in comparison to baseline value: ** p < 0.05 in comparison to the HT baseline group (Mann–Whitney U-test).

References

    1. Bartlett J.D., Close G.L., MacLaren D.P., Gregson W., Drust B., Morton J.P. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: Implications for exercise adherence. J. Sports Sci. 2011;29:547–553. doi: 10.1080/02640414.2010.545427.
    1. Laursen P.B., Jenkins D.G. The scientific basis for high-intensity interval training. Optimising training programmes and maximizing performance in highly trained endurance athletes. Sports Med. 2002;32:53–73. doi: 10.2165/00007256-200232010-00003.
    1. Billat L.V. Interval training for performance: A scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: Aerobic interval training. Sports Med. 2001;31:13–31. doi: 10.2165/00007256-200131010-00002.
    1. Billat L.V. Interval training for performance: A scientific and empirical practice. Special recommendations for middle- and long-distance running. Part II: Anaerobic interval training. Sports Med. 2001;31:75–90. doi: 10.2165/00007256-200131020-00001.
    1. Kimm S.Y., Glynn N.W., McMahon R.P., Voorhees C.C., Striegel-Moore R.H., Daniels S.R. Self-perceived barriers to activity participation among sedentary adolescent girls. Med. Sci. Sports Exerc. 2006;38:534–540. doi: 10.1249/01.mss.0000189316.71784.dc.
    1. Jung M.E., Bourne J.E., Little J.P. Where does HIT fit? An examination of the affective response to high-intensity intervals in comparison to continuous moderate- and continuous vigorous-intensity exercise in the exercise intensity-affect continuum. PLoS ONE. 2014;9:e114541. doi: 10.1371/journal.pone.0114541.
    1. Gibala M.J., Gillen J.B., Percival M.E. Physiological and health-related adaptations to low-volume interval training: Influences of nutrition and sex. Sports Med. 2014;44(Suppl. 2):127–137. doi: 10.1007/s40279-014-0259-6.
    1. Gillen J.B., Percival M.E., Skelly L.E., Martin B.J., Tan R.B., Tarnopolsky M.A., Gibala M. Three minutes of all-out intermittent exercise per week increases skeletal muscle oxidative capacity and improves cardiometabolic health. PLoS ONE. 2014;9:e111489. doi: 10.1371/journal.pone.0111489.
    1. Skelly L.E., Andrews P.C., Gillen J.B., Martin B.J., Percival M.E., Gibala M.J. High-intensity interval exercise induces 24-h energy expenditure similar to traditional endurance exercise despite reduced time commitment. Appl. Physiol. Nutr. Metab. 2014;39:1–4. doi: 10.1139/apnm-2013-0562.
    1. Siahkouhian M.K.D., Shahmoradi K. Effects of high-intensity interval training on aerobic and anaerobic indices: Comparison of physically active an inactive men. Sci. Sports. 2013;28:119–125. doi: 10.1016/j.scispo.2012.11.006.
    1. Boutcher S.H. High-intensity intermittent exercise and fast loss. J. Obes. 2011:868305. doi: 10.1155/2011/868305.
    1. Shehata A., Mohmoud I. Effect of high intensity interval tranining (HIIT) on weight, body mass index and body fat percentage for adults. Sci. Mov. Health. 2018;18:125–130.
    1. Ouerghi N., Ben-Fradj K., Bezrati I., Khammassi M., Feki N., Bouassida A. Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men. Biol. Sport. 2017;34:385–392. doi: 10.5114/biolsport.2017.69827.
    1. Türk Y., Theel W., Kasteleyn W., Franssen F.M.E., Hiemstra P.S., Rudolphus A. High intensity training in obesity: A meta-analysis. Obes. Sci. Pract. 2017 doi: 10.1002/osp4.109.
    1. Hood M.S., Little J.P., Tarnopolsky M.A., Myslik F., Gibala M.J. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med. Sci. Sports Exerc. 2011;43:1849–1856. doi: 10.1249/MSS.0b013e3182199834.
    1. Hoshino D., Kitaoka Y., Hatta H. High-intensity interval training enhances oxidative capacity and substrate availability in skeletal muscle. J. Phys. Fitness Sports Med. 2016;5:13–23. doi: 10.7600/jpfsm.5.13.
    1. Rakobowchuk M., Tanguay S., Burgomaster K.A., Howarth K.R., Gibala M.J., MacDonald M.J. Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008;295:236–242. doi: 10.1152/ajpregu.00069.2008.
    1. Stenman M., Pesola A., Laukkanen A., Haapala E. Effects of two-week high-intensity interval training on cognition in adolescents—A randomized controlled pilot study. Hum. Mov. 2018;18:15–20. doi: 10.1515/humo-2017-0019.
    1. Alahmadi M.A. High-intensity interval training and obesity. J. Nov. Physiother. 2014;4:211. doi: 10.4172/2165-7025.1000211.
    1. Alkahtani S.A., King N.A., Hills A.P., Byrne N.M. Effect of interval training intensity on fat oxidation, blood lactate and the rate of perceived exertion in obese men. SpringerPlus. 2013;2:532. doi: 10.1186/2193-1801-2-532.
    1. Francois M.E., Little J.P. Effectiveness and safety of high-intensity interval training in patients with type 2 diabetes. Diabetes Spectr. 2015;28:39–44. doi: 10.2337/diaspect.28.1.39.
    1. Matos M.A., Vieira D.V., Pinhal K.C., Lopes J.F., Dias-Peixoto M.F., Pauli J.R., Magalhães F.C., Little J.P., Rocha-Vieira E., Amorim F.T. High-intensity interval training improves markers of oxidative metabolism in skeletal muscle of individuals with obesity and insulin resistance. Front. Physiol. 2018;31:doi. doi: 10.3389/fphys.2018.01451.
    1. Khammassi M., Ouerghi N., Hadj-Taieb S., Feki M., Thivel D., Bouassida A. Impact of a 12-week high-intensity interval training without caloric restriction on body composition and lipid profile in sedentary healthy overweight/obese youth. J. Exerc. Rehabil. 2018;14:118–125. doi: 10.12965/jer.1835124.562.
    1. Feito Y., Brown C., Olmos A. A content analysis of the high-intensity functional training literature: A look at the past and directions for the future. Hum. Mov. 2019;20:1–15. doi: 10.5114/hm.2019.81020.
    1. Tabata I., Nishimura K., Kouzaki M., Hirai Y., Ogita F., Miyachi M., Yamamoto K. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med. Sci. Sports Exerc. 1996;28:1327–1330. doi: 10.1097/00005768-199610000-00018.
    1. Thompson W. Worldwide survey of fitness trends for 2019. ACSM’s Health Fitness J. 2018;22:10–17. doi: 10.1249/FIT.0000000000000438.
    1. Bostrom P., Wu J., Jedrychowski M.P., Korde A., Ye L., Lo J.C., Rasbach K.A., Boström E.A., Choi J.H., Long J.Z., et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–468. doi: 10.1038/nature10777.
    1. Roca-Rivada A., Castelao C., Senin L.L., Landrove M.O., Baltar J., Crujeiras A., Seoane L.M., Casanueva F.F., Pardo M. FNDC5/irisin is not only a myokine but also an adipokine. PLoS ONE. 2013;8:e60563. doi: 10.1371/journal.pone.0060563.
    1. Wrann C.D., White J.P., Salogiannnis J., Laznik-Bogoslavski D., Wu J., Ma D., Lin J.D., Greenberg M.E., Spiegelman B.M. Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway. Cell Metab. 2013;18:649–659. doi: 10.1016/j.cmet.2013.09.008.
    1. Mehrabian S., Taheri E., Karkhanenh M., Qorbani M., Hosseini S. Association of circulating irisin levels with normal weight obesity; glycemic and lipid profile. J. Diabetes Metab. Disord. 2016;15:17. doi: 10.1186/s40200-016-0239-5.
    1. Fukushima Y., Kurose S., Shinno H., Thi Thu H.C., Takao N., Tsutsumi H., Hasegawa T., Nakajima T., Kimura Y. Effects of body weight reduction on serum irisin and metabolic parameters in obese subjects. Diabetes Metab. J. 2016;40:386–395. doi: 10.4093/dmj.2016.40.5.386.
    1. Elsen M., Raschke S., Eckel J. Browning of white fat: Does irisin play a role in humans? J. Endocrinol. 2014;222:25–38. doi: 10.1530/JOE-14-0189.
    1. Dünnwald T., Melmer A., Gatterer H., Salzmann K., Ebenbichler C., Burtscher M., Schobersberger W., Grander W. Supervised short-term high-intensity training on plasma irisin concentrations in type 2 diabetic patients. Int. J. Sports Med. 2019;40:158–164. doi: 10.1055/a-0828-8047.
    1. Li D.J., Li Y.H., Yuan H.B., Qu L.F., Wang P. The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metabolism. 2017;68:31–42. doi: 10.1016/j.metabol.2016.12.003.
    1. Aydin S., Aydin S., Kuloglu T., Yilmaz M., Kalayci M., Sahin I., Cicek D. Alterations of irisin concentrations in saliva and serum of obese and normal-weight subjects; before and after 45 min of a Turkish bath or running. Peptides. 2013;50:13–18. doi: 10.1016/j.peptides.2013.09.011.
    1. Norheim F., Langleite T.M., Hjorth M., Holen T., Kielland A., Stadheim H.K., Gulseth H.L., Birkeland K.I., Jensen J., Drevon C.A., et al. The effects of acute and chronic exercise on PGC-1alpha; irisin and browning of subcutaneous adipose tissue in humans. FEBS J. 2014;281:739–749. doi: 10.1111/febs.12619.
    1. Pekkala S., Wiklund P.K., Hulmi J.J., Ahtiainen J.P., Horttanainen M., Pöllänen E., Mäkelä K.A., Kainulainen H., Häkkinen K., Nyman K., et al. Are skeletal muscle FNDC5 gene expression and irisin release regulated by exercise and related to health? J. Physiol. 2013;591:5393–5400. doi: 10.1113/jphysiol.2013.263707.
    1. Kraemer R.R., Shockett P., Webb N.D., Shah U., Castracane V.D. A transient elevated irisin blood concentration in response to prolonged; moderate aerobic exercise in young men and women. Horm. Metab. Res. 2014;46:150–1538. doi: 10.1249/01.mss.0000494385.02684.8b.
    1. Huh J.Y., Mougios V., Kabasakalis A., Fatouros I., Siopi A., Douroudos I.I., Filippaios A., Panagiotou G., Park K.H., Mantzoros C.S. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. J. Clin. Endocrinol. Metab. 2014;99:2154–2161. doi: 10.1210/jc.2014-1437.
    1. Khodadadi H., Rajabi H., Seyyed Reza Attarzadeh S.R., Abbasian S. The efect of high intensity interval training (HIIT) and pilates on levels of irisin and insulin resistance in overweight women. Iran. J. Endocrinol. Metab. 2014;16:190–196.
    1. Archundia-Herrera C., Macias-Cervantes M., Ruiz-Muñoz B., Vargas-Ortiz K., Kornhauser C., PerezVazquez V. Muscle irisin response to aerobic vs HIIT in overweight female adolescents. Diabetol. Metab. Syndr. 2017;9:165–172. doi: 10.1186/s13098-017-0302-5.
    1. Jeukendrup A., Gleeson M. Sport Nutrition. Human Kinetics; Champaign, IL, USA: 2019.
    1. Edvardsen E., Hem E., Anderssen A.A. End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: A cross-sectional study. PLoS ONE. 2014;9:e85276. doi: 10.1371/journal.pone.0085276.
    1. Driss T., Vandewalle H. The measurement of maximal (anaerobic) power output on a cycle ergometer: A critical review. BioMed Res. Int. 2013:589361. doi: 10.1155/2013/589361.
    1. Murawska-Cialowicz E., Wojna J., Zuwala-Jagiello J. CrossFit training changes brain-derived neurotrophic factor and irisin levels at rest, after Wingate and progressive tests and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharm. 2015;66:811–825.
    1. Stengel A., Hofmann T., Goebel-Stengel M., Elbelt U., Kobelt P., Klapp B.F. Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity correlation with body mass index. Peptides. 2013;39:125–130. doi: 10.1016/j.peptides.2012.11.014.
    1. Timmons J.A., Baar K., Davidsen P.K., Atherton P.J. Is irisin a human exercise gene? Nature. 2012;488:E9–E10. doi: 10.1038/nature11364.
    1. Kurdiova T., Balaz M., Vician M., Maderova D., Vlcek M., Valkovic L. Effects of obesity; diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: In vivo and in vitro studies. J. Physiol. 2014;592:1091–1107. doi: 10.1113/jphysiol.2013.264655.
    1. Daskalopoulou S.S., Cooke A.B., Gomez Y.H., Mutter A.F., Filippaios A., Mesfum E.T. Plasma irisin levels progressively increase in response to increasing exercise workloads in young; healthy; active subjects. Eur. J. Endocrinol. 2014;171:343–352. doi: 10.1530/EJE-14-0204.
    1. Kerstholt N., Ewert R., Nauck M., Spielhagen T., Bollmann T., Stubbe B. Association of circulating irisin and cardiopulmonary exercise capacity in healthy volunteers: Results of the Study of Health in Pomerania. BMC Pulm. Med. 2015;15:41. doi: 10.1186/s12890-015-0035-x.
    1. Foster C., Farland C.V., Guidotti F., Harbin M., Roberts B., Schuette J. The effects of high intensity interval training vs steady state training on aerobic and anaerobic capacity. J. Sports Sci. Med. 2015;14:747–755.
    1. Burgomaster K.A., Howarth K.R., Phillips S.M., Rakobowchuk M., MacDonald M.J., McGee S.L. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. 2008;586:151–160. doi: 10.1113/jphysiol.2007.142109.
    1. Trapp E.G., Chisholm D.J., Freund J., Boutcher S.H. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int. J. Obes. (Lond.) 2008;32:684–691. doi: 10.1038/sj.ijo.0803781.
    1. Talanian J.L., Galloway S.D., Heigenhauser G.J., Bonen A., Spriet L.L. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J. Appl. Physiol. 2007;102:1439–1447. doi: 10.1152/japplphysiol.01098.2006.
    1. Wasserman K.H.J., Sue D.Y., Stringer W.W., Whipp B.J. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2012.
    1. Little J.P., Safdar A., Wilkin G.P., Tarnopolsky M.A., Gibala M.J. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: Potential mechanisms. J. Physiol. 2010;588:1011–1022. doi: 10.1113/jphysiol.2009.181743.
    1. Gibala M.J., Little J.P., MacDonald M.J., Hawley J.A. Physiological adaptations to low-volume; high-intensity interval training in health and disease. J. Physiol. 2012;590:1077–1084. doi: 10.1113/jphysiol.2011.224725.
    1. Nalbandian M., Takeda M. Lactate as a signaling molecule that regulates exercise-induced adaptations. Biology. 2016;5:38. doi: 10.3390/biology5040038.
    1. Castro F., Aquino R., Júnior J., Gonçalves L., Puggina E. Strength training with vascular occlusion: A review of possible adaptive mechanisms. Hum. Mov. 2017;18:3–14. doi: 10.1515/humo-2017-0010.
    1. Clanton T.L., Klawitter P.F. Physiological and genomic consequences of intermittent hypoxia invited review: Adaptive responses of skeletal muscle to intermittent hypoxia: The known and the unknown. J. Appl. Physiol. 2001;90:2476–2487. doi: 10.1152/jappl.2001.90.6.2476.
    1. Summermatter S., Santos G., Perez-Schindler J., Handschin C. Skeletal muscle PGC-1alpha controls whole-body lactate homeostasis through estrogen-related receptor alpha-dependent activation of LDH B and repression of LDH A. Proc. Natl. Acad. Sci. USA. 2013;110:8738–8743. doi: 10.1073/pnas.1212976110.
    1. Perry C.G., Heigenhauser G.J., Bonen A., Spriet L.L. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl. Physiol. Nutr. Metab. 2008;33:1112–1123. doi: 10.1139/H08-097.
    1. McNulty C.R., Robergs R.A. Repeat trial and breath averaging: Recommendations for research of VO2 kinetics of exercise transitions to steady-state. Mov. Sport Sci./Sci. Mot. 2019;106:37–44. doi: 10.1051/sm/2019017.

Source: PubMed

3
Prenumerera