COVID-19, SARS and MERS: are they closely related?

N Petrosillo, G Viceconte, O Ergonul, G Ippolito, E Petersen, N Petrosillo, G Viceconte, O Ergonul, G Ippolito, E Petersen

Abstract

Background: The 2019 novel coronavirus (SARS-CoV-2) is a new human coronavirus which is spreading with epidemic features in China and other Asian countries; cases have also been reported worldwide. This novel coronavirus disease (COVID-19) is associated with a respiratory illness that may lead to severe pneumonia and acute respiratory distress syndrome (ARDS). Although related to the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS), COVID-19 shows some peculiar pathogenetic, epidemiological and clinical features which to date are not completely understood.

Aims: To provide a review of the differences in pathogenesis, epidemiology and clinical features of COVID-19, SARS and MERS.

Sources: The most recent literature in the English language regarding COVID-19 has been reviewed, and extracted data have been compared with the current scientific evidence about SARS and MERS epidemics.

Content: COVID-19 seems not to be very different from SARS regarding its clinical features. However, it has a fatality rate of 2.3%, lower than that of SARS (9.5%) and much lower than that of MERS (34.4%). The possibility cannot be excluded that because of the less severe clinical picture of COVID-19 it can spread in the community more easily than MERS and SARS. The actual basic reproductive number (R0) of COVID-19 (2.0-2.5) is still controversial. It is probably slightly higher than the R0 of SARS (1.7-1.9) and higher than that of MERS (<1). A gastrointestinal route of transmission for SARS-CoV-2, which has been assumed for SARS-CoV and MERS-CoV, cannot be ruled out and needs further investigation.

Implications: There is still much more to know about COVID-19, especially as concerns mortality and its capacity to spread on a pandemic level. Nonetheless, all of the lessons we learned in the past from the SARS and MERS epidemics are the best cultural weapons with which to face this new global threat.

Keywords: COVID-19; Coronavirus; Emerging infections; MERS; SARS.

Copyright © 2020 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

References

    1. World Health Organization . 2020. Coronavirus disease 2019 (COVID-19) situation report-48. 08th March. Availabe from:
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7.
    1. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585.
    1. Liu K., Fang Y.-Y., Deng Y., Liu W., Wang M.-F., Ma J.-P. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl) 2020 doi: 10.1097/CM9.0000000000000744.
    1. Munster V.J., Koopmans M., van Doremalen N., van Riel D., de Wit E. A novel coronavirus emerging in China — key questions for impact assessment. N Engl J Med. 2020 January doi: 10.1056/NEJMp2000929. NEJMp2000929.
    1. Chen Y., Liu Q., Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92:418–423. doi: 10.1002/jmv.25681. jmv.25681.
    1. Malik Y.S., Sircar S., Bhat S., Sharun K., Dhama K., Dadar M. Emerging novel Coronavirus (2019-nCoV) — current scenario, evolutionary perspective based on genome analysis and recent developments. Vet Q. 2020;40:68–76. doi: 10.1080/01652176.2020.1727993.
    1. Wu A., Peng Y., Huang B., Ding X., Wang X., Niu P. Commentary genome composition and divergence of the novel coronavirus ( 2019-nCoV ) originating in China. Cell Host Microbe. 2020;27:325–328. doi: 10.1016/j.chom.2020.02.001.
    1. Benvenuto D., Giovanetti M., Ciccozzi A., Spoto S., Angeletti S., Ciccozzi M. The 2019-new coronavirus epidemic: evidence for virus evolution. J Med Virol. 2020 February:25688. doi: 10.1002/jmv.25688. jmv.
    1. Chan J.F.-W., Yuan S., Kok K.-H., To K.K.-W., Chu H., Jin Yang. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514–523. doi: 10.1016/S0140-6736(20)30154-9.
    1. Chan J.F.-W., Kok K.-H., Zhu Z., Chu H., To K.K.-W., Yuan S. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbe. Infect. 2020;9:221–236. doi: 10.1080/22221751.2020.1719902.
    1. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–574. doi: 10.1016/S0140-6736(20)30251-8.
    1. Paraskevis D., Kostaki E.G., Magiorkinis G., Panayiotakopoulos G., Sourvinos G., Tsiodras S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol. 2020;79:104212. doi: 10.1016/j.meegid.2020.104212.
    1. Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J Virol. 2020 January doi: 10.1128/JVI.00127-20.
    1. Imai Y., Kuba K., Ohto-Nakanishi T., Penninger J.M. Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circ J. 2010;74:405–410. doi: 10.1253/circj.CJ-10-0045.
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–733. doi: 10.1056/nejmoa2001017.
    1. Hamming I., Timens W., Bulthuis M.L.C., Lely A.T., Navis G.J., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–637. doi: 10.1002/path.1570.
    1. Report of the WHO–China joint mission on coronavirus disease 2019 (COVID-19) 2020. 16-24 february. Available from:
    1. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020;382:1199–1207. doi: 10.1056/NEJMoa2001316. NEJMoa2001316.
    1. Chen J. Pathogenicity and transmissibility of 2019-nCoV—a quick overview and comparison with other emerging viruses. Microbe. Infect. 2020;22:69–71. doi: 10.1016/j.micinf.2020.01.004.
    1. Wu J.T., Leung K., Leung G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020;395:689–697. doi: 10.1016/S0140-6736(20)30260-9.
    1. Liu T., Hu J., Kang M., Lin L., Zhong H., Xiao J. Transmission dynamics of 2019 novel coronavirus (2019-nCoV) bioRxiv January. 2020:2020. doi: 10.1101/2020.01.25.919787. 01.25.919787.
    1. Bauch C.T., Lloyd-Smith J.O., Coffee M.P., Galvani A.P. Dynamically modeling SARS and other newly emerging respiratory illnesses. Epidemiology. 2005;16:791–801. doi: 10.1097/01.ede.0000181633.80269.4c.
    1. Liu Y., Gayle A.A., Wilder-Smith A., Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020;27 doi: 10.1093/jtm/taaa021.
    1. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) — China, 2020. China CDC Wkly. 2020;8:113–122.
    1. Wu P., Hao X., Lau E.H.Y., Wong J.Y., Leung K.S.M., Wu J.T. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Eurosurveillance. 2020;25:2000044. doi: 10.2807/1560-7917.ES.2020.25.3.2000044.
    1. World Health Organization, Department of Communicable Disease Surveillance and Response . 2003. Consensus document on the epidemiology of severe acute respiratory syndrome (SARS) 16-17th May.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan , China. Lancet. 2020;6736:1–10. doi: 10.1016/S0140-6736(20)30183-5.
    1. Wang Z., Chen X., Lu Y., Chen F., Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci Trends. 2020;14:64–68. doi: 10.5582/bst.2020.01030.
    1. Chang D., Lin M., Wei L., Xie L., Zhu G., Dela Cruz C.S. Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China. JAMA. 2020;323:1092–1093. doi: 10.1001/jama.2020.1623.
    1. Kim J.Y., Choe P.G., Oh Y., Oh K.J., Kim J., Park S.J. The first case of 2019 novel coronavirus pneumonia imported into Korea from Wuhan, China: implication for infection prevention and control measures. J Kor Med Sci. 2020;35:e61. doi: 10.3346/jkms.2020.35.e61.
    1. Ki M, -nCoV T.F.F. Epidemiologic characteristics of early cases with 2019 novel coronavirus (2019-nCoV) disease in Republic of Korea. Epidemiol Health. 2020:e2020007. doi: 10.4178/epih.e2020007.
    1. Holshue M.L., DeBolt C., Lindquist S., Lofy K.H., Wiesman J., Bruce H. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382:929–936. doi: 10.1056/NEJMoa2001191. NEJMoa2001191.
    1. Chung M., Bernheim A., Mei X., Zhang N., Huang M., Zeng X. CT imaging features of 2019 novel coronavirus (2019-nCoV) Radiology. 2020:295. doi: 10.1148/radiol.2020200230.
    1. Xie X., Zhong Z., Zhao W., Zheng C., Wang F., Liu J. Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing. Radiology. 2020 February doi: 10.1148/radiol.2020200343. 200343.
    1. Azhar E.I., Hui D.S.C., Memish Z.A., Drosten C., Zumla A. The Middle East respiratory syndrome (MERS) Infect Dis Clin North Am. 2019;33:891–905. doi: 10.1016/j.idc.2019.08.001.
    1. Cha R.H., Joh J.S., Jeong I., Lee J.Y., Shin H.S., Kim G. Renal complications and their prognosis in Korean patients with Middle East respiratory syndrome-coronavirus from the central MERS-CoV designated hospital. J Kor Med Sci. 2015;30:1807–1814. doi: 10.3346/jkms.2015.30.12.1807.
    1. Yang W., Punyadarsaniya D., Lambertz R.L.O., Lee D.C.C., Liang C.H., Höper D. Mutations during the adaptation of H9N2 avian influenza virus to the respiratory epithelium of pigs enhance sialic acid binding activity and virulence in mice. J Virol. 2017;91 doi: 10.1128/jvi.02125-16.
    1. Kim J.Y., Ko J.-H., Kim Y., Kim Y.J., Kim J.M., Chung Y.S. Viral load kinetics of SARS-CoV-2 infection in first two patients in Korea. J Kor Med Sci. 2020;35 doi: 10.3346/jkms.2020.35.e86.
    1. Zou L., Ruan F., Huang M., Liang L., Huang H., Hong Z. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382:1177–1179. doi: 10.1056/NEJMc2001737. NEJMc2001737.
    1. Peiris J.S.M., Chu C.M., Cheng V.C.C., Chan K.S., Hung I.F.N., Poon L.L.M. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361:1767–1772. doi: 10.1016/S0140-6736(03)13412-5.
    1. Bleibtreu A., Bertine M., Bertin C., Houhou-Fidouh N., Visseaux B. Focus on Middle East respiratory syndrome coronavirus (MERS-CoV) Méd Mal Infect. 2019 doi: 10.1016/j.medmal.2019.10.004.
    1. Booth C.M. Clinical features and short-term outcomes of 144 patients with SARS in the Greater Toronto Area. JAMA. 2003;289:2801. doi: 10.1001/jama.289.21.JOC30885.
    1. Zhou J., Li C., Zhao G., Chu H., Wang D., Yan H.H.-N. Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus. Sci Adv. 2017;3 doi: 10.1126/sciadv.aao4966.
    1. Yeo C., Kaushal S., Yeo D. Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol. 2020;5:335–337. doi: 10.1016/S2468-1253(20)30048-0.
    1. Hui D.S.C., Zumla A. Severe acute respiratory syndrome. Infect Dis Clin North Am. 2019;33:869–889. doi: 10.1016/j.idc.2019.07.001.
    1. Lee N., Hui D., Wu A., Chan P., Cameron P., Joynt G.M. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 2003;348:1986–1994. doi: 10.1056/NEJMoa030685.
    1. Chu K.H., Tsang W.K., Tang C.S., Lam M.F., Lai F.M., To K.F. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int. 2005;67:698–705. doi: 10.1111/j.1523-1755.2005.67130.x.
    1. Choi W.S., Kang C.-I., Kim Y., Choi J.-P., Joh J.S., Shin H.-S. Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea. Infect Chemother. 2016;48:118. doi: 10.3947/ic.2016.48.2.118.
    1. Saad M., Omrani A.S., Baig K., Bahloul A., Elzein F., Matin M.A. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. Int J Infect Dis. 2014;29:301–306. doi: 10.1016/j.ijid.2014.09.003.

Source: PubMed

3
Prenumerera