Direct and indirect associations between dietary magnesium intake and breast cancer risk

Wu-Qing Huang, Wei-Qing Long, Xiong-Fei Mo, Nai-Qi Zhang, Hong Luo, Fang-Yu Lin, Jing Huang, Cai-Xia Zhang, Wu-Qing Huang, Wei-Qing Long, Xiong-Fei Mo, Nai-Qi Zhang, Hong Luo, Fang-Yu Lin, Jing Huang, Cai-Xia Zhang

Abstract

This study aimed to explore the effect of dietary magnesium intake on breast cancer risk both directly and indirectly via its effect on inflammatory markers C-reactive protein (CRP) and interleukin-6 (IL-6). This case-control study recruited 1050 case patients and 1229 control subjects. Inflammatory marker levels of 322 cases and 322 controls, randomly selected, were measured using ELISA, and data on dietary magnesium intake were collected using a food frequency questionnaire. Multivariable logistic regression was used to estimate the odds ratio (OR) and 95% confidence interval (CI), and path analysis was used to investigate the mediating effect. A higher magnesium intake was associated with a lower breast cancer risk (adjusted OR = 0.80, 95% CI = 0.65, 0.99). A positive association was found between the CRP level and breast cancer risk (adjusted OR = 1.43, 95% CI = 1.02-2.01). However, IL-6 was not found to be associated with breast cancer risk. Path analysis revealed that dietary magnesium affected breast cancer risk both directly and indirectly by influencing the CRP level. The results indicate that a direct negative association and an indirect association through influencing the CRP level were observed between dietary magnesium intake and breast cancer risk.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Flow chart of study participants (IL-6, Interleukin-6; CRP, C-reactive protein).
Figure 2
Figure 2
Dose–response relationship between magnesium intake and breast cancer risk in Chinese women.
Figure 3
Figure 3
Path model of associations between magnesium and calcium intake, inflammatory marker levels (IL-6 and CRP) and breast cancer risk in Chinese women. Values are estimates of direct effects; *P value < 0.05.

References

    1. Torre LA, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108. doi: 10.3322/caac.21262.
    1. Sartori S, et al. Serum and erythrocyte magnesium concentrations in solid tumours: relationship with stage of malignancy. Magnes Res. 1992;5:189–192.
    1. Houston M. The role of magnesium in hypertension and cardiovascular disease. J Clin Hypertens (Greenwich) 2011;13:843–847. doi: 10.1111/j.1751-7176.2011.00538.x.
    1. Guerrero-Romero F, Jaquez-Chairez FO, Rodriguez-Moran M. Magnesium in metabolic syndrome: a review based on randomized, double-blind clinical trials. Magnes Res. 2016;29:146–153.
    1. Ko HJ, et al. Dietary magnesium intake and risk of cancer: a meta-analysis of epidemiologic studies. Nutr Cancer. 2014;66:915–923. doi: 10.1080/01635581.2014.922203.
    1. Blaszczyk U, Duda-Chodak A. Magnesium: its role in nutrition and carcinogenesis. Rocz Panstw Zakl Hig. 2013;64:165–171.
    1. Nielsen FH. Magnesium, inflammation, and obesity in chronic disease. Nutr Rev. 2010;68:333–340. doi: 10.1111/j.1753-4887.2010.00293.x.
    1. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta. 2000;294:1–26. doi: 10.1016/S0009-8981(99)00258-2.
    1. Yang CY, et al. Calcium and magnesium in drinking water and the risk of death from breast cancer. J Toxicol Environ Health A. 2000;60:231–241. doi: 10.1080/00984100050027798.
    1. Tao MH, et al. Associations of intakes of magnesium and calcium and survival among women with breast cancer: results from Western New York Exposures and Breast Cancer (WEB) Study. Am J Cancer Res. 2016;6:105–113.
    1. Nielsen FH. Guidance for the determination of status indicators and dietary requirements for magnesium. Magnes Res. 2016;29:154–160.
    1. Rosanoff A, Weaver CM, Rude RK. Suboptimal magnesium status in the United States: are the health consequences underestimated? Nutr Rev. 2012;70:153–164. doi: 10.1111/j.1753-4887.2011.00465.x.
    1. Glasdam SM, Glasdam S, Peters GH. The Importance of Magnesium in the Human Body: A Systematic Literature Review. Adv Clin Chem. 2016;73:169–193. doi: 10.1016/bs.acc.2015.10.002.
    1. Dibaba DT, Xun P, He K. Dietary magnesium intake is inversely associated with serum C-reactive protein levels: meta-analysis and systematic review. Eur J Clin Nutr. 2014;68:971. doi: 10.1038/ejcn.2014.111.
    1. Simental-Mendia LE, Sahebkar A, Rodriguez-Moran M, Zambrano-Galvan G, Guerrero-Romero F. Effect of Magnesium Supplementation on Plasma C-reactive Protein Concentrations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr Pharm Des. 2017;23:4678–4686. doi: 10.2174/1381612823666170525153605.
    1. Galland L. Diet and inflammation. Nutr Clin Pract. 2010;25:634–640. doi: 10.1177/0884533610385703.
    1. Nielsen FH, Johnson LK, Zeng H. Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res. 2010;23:158–168.
    1. Kim DJ, et al. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care. 2010;33:2604–2610. doi: 10.2337/dc10-0994.
    1. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–545. doi: 10.1016/S0140-6736(00)04046-0.
    1. Grivennikov SI, Karin M. Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis. 2011;70(Suppl 1):i104–i108. doi: 10.1136/ard.2010.140145.
    1. Khan S, Shukla S, Sinha S, Meeran SM. Role of adipokines and cytokines in obesity-associated breast cancer: therapeutic targets. Cytokine Growth Factor Rev. 2013;24:503–513. doi: 10.1016/j.cytogfr.2013.10.001.
    1. Dupuy AM, et al. Is C-reactive protein a marker of inflammation? Nephrologie. 2003;24:337–341.
    1. Meguro S, Ishibashi M, Takei I. [The significance of high sensitive C reactive protein as a risk factor for cardiovascular diseases] Rinsho Byori. 2012;60:356–361.
    1. Gewurz H, Mold C, Siegel J, Fiedel B. C-reactive protein and the acute phase response. Adv Intern Med. 1982;27:345–372.
    1. Ansar W, Ghosh S. C-reactive protein and the biology of disease. Immunol Res. 2013;56:131–142. doi: 10.1007/s12026-013-8384-0.
    1. Ablij H, Meinders A. C-reactive protein: history and revival. Eur J Intern Med. 2002;13:412. doi: 10.1016/S0953-6205(02)00132-2.
    1. Pearson TA, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107:499–511. doi: 10.1161/01.CIR.0000052939.59093.45.
    1. Doumatey AP, Zhou J, Adeyemo A, Rotimi C. High sensitivity C-reactive protein (Hs-CRP) remains highly stable in long-term archived human serum. Clin Biochem. 2014;47:315–318. doi: 10.1016/j.clinbiochem.2013.12.014.
    1. Zhang SM, et al. C-reactive protein and risk of breast cancer. J Natl Cancer Inst. 2007;99:890–894. doi: 10.1093/jnci/djk202.
    1. Guo L, et al. C-reactive protein and risk of breast cancer: A systematic review and meta-analysis. Sci Rep. 2015;5:10508. doi: 10.1038/srep10508.
    1. Zhou B, et al. C-reactive protein, interleukin-6 and the risk of colorectal cancer: a meta-analysis. Cancer Causes Control. 2014;25:1397–1405. doi: 10.1007/s10552-014-0445-8.
    1. Rocha P, et al. Prognostic impact of C-reactive protein in metastatic prostate cancer: a systematic review and meta-analysis. Oncol Res Treat. 2014;37:772–776. doi: 10.1159/000369545.
    1. Guo YZ, Pan L, Du CJ, Ren DQ, Xie XM. Association between C-reactive protein and risk of cancer: a meta-analysis of prospective cohort studies. Asian Pac J Cancer Prev. 2013;14:243–248. doi: 10.7314/APJCP.2013.14.1.243.
    1. Xu M, et al. Serum C-reactive protein and risk of lung cancer: a case-control study. Med Oncol. 2013;30:319. doi: 10.1007/s12032-012-0319-4.
    1. Asegaonkar SB, Asegaonkar BN, Takalkar UV, Advani S, Thorat AP. C-Reactive Protein and Breast Cancer: New Insights from Old Molecule. Int J Breast Cancer. 2015;2015:145647. doi: 10.1155/2015/145647.
    1. Dethlefsen C, Hojfeldt G, Hojman P. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat. 2013;138:657–664. doi: 10.1007/s10549-013-2488-z.
    1. Yeon JY, et al. Evaluation of dietary factors in relation to the biomarkers of oxidative stress and inflammation in breast cancer risk. Nutrition. 2011;27:912–918. doi: 10.1016/j.nut.2010.10.012.
    1. Agnoli C, et al. Biomarkers of inflammation and breast cancer risk: a case-control study nested in the EPIC-Varese cohort. Sci Rep. 2017;7:12708. doi: 10.1038/s41598-017-12703-x.
    1. Heikkila K, et al. Associations of circulating C-reactive protein and interleukin-6 with cancer risk: findings from two prospective cohorts and a meta-analysis. Cancer Causes Control. 2009;20:15–26. doi: 10.1007/s10552-008-9212-z.
    1. Castiglioni S, Maier JA. Magnesium and cancer: a dangerous liason. Magnes Res. 2011;24:S92–S100.
    1. Wolf FI, et al. Magnesium and neoplasia: from carcinogenesis to tumor growth and progression or treatment. Arch Biochem Biophys. 2007;458:24–32. doi: 10.1016/j.abb.2006.02.016.
    1. Fan Y, Mao R, Yang J. NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell. 2013;4:176–185. doi: 10.1007/s13238-013-2084-3.
    1. He G, Karin M. NF-kappaB and STAT3 - key players in liver inflammation and cancer. Cell Res. 2011;21:159–168. doi: 10.1038/cr.2010.183.
    1. Zhou C, Liu J, Tang Y, Liang X. Inflammation linking EMT and cancer stem cells. Oral Oncol. 2012;48:1068–1075. doi: 10.1016/j.oraloncology.2012.06.005.
    1. Fisher DT, Appenheimer MM, Evans SS. The two faces of IL-6 in the tumor microenvironment. Semin Immunol. 2014;26:38–47. doi: 10.1016/j.smim.2014.01.008.
    1. Nelson SH, et al. The Association of the C-Reactive Protein Inflammatory Biomarker with Breast Cancer Incidence and Mortality in the Women’s Health Initiative. Cancer Epidemiol Biomarkers Prev. 2017;26:1100–1106. doi: 10.1158/1055-9965.EPI-16-1005.
    1. Ollberding NJ, et al. Prediagnostic leptin, adiponectin, C-reactive protein, and the risk of postmenopausal breast cancer. Cancer Prev Res (Phila) 2013;6:188–195. doi: 10.1158/1940-6207.CAPR-12-0374.
    1. Frydenberg H, et al. Pre-diagnostic high-sensitive C-reactive protein and breast cancer risk, recurrence, and survival. Breast Cancer Res Treat. 2016;155:345–354. doi: 10.1007/s10549-015-3671-1.
    1. Wang J, et al. Plasma C-reactive protein and risk of breast cancer in two prospective studies and a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2015;24:1199–1206. doi: 10.1158/1055-9965.EPI-15-0187.
    1. Dossus L, et al. C-reactive protein and postmenopausal breast cancer risk: results from the E3N cohort study. Cancer Causes Control. 2014;25:533–539. doi: 10.1007/s10552-014-0355-9.
    1. Chan DS, Bandera EV, Greenwood DC, Norat T. Circulating C-Reactive Protein and Breast Cancer Risk-Systematic Literature Review and Meta-analysis of Prospective Cohort Studies. Cancer Epidemiol Biomarkers Prev. 2015;24:1439–1449. doi: 10.1158/1055-9965.EPI-15-0324.
    1. Wang G, et al. [Association between the level of high sensitivity C-reactive protein and risk of breast cancer among non-diabetic females: a prospective study in Kailuan group] Zhonghua Zhong Liu Za Zhi. 2014;36:944–948.
    1. Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015;3:207–215. doi: 10.1016/S2213-8587(14)70134-2.
    1. Mraz M, Haluzik M. The role of adipose tissue immune cells in obesity and low-grade inflammation. J Endocrinol. 2014;222:R113–R127. doi: 10.1530/JOE-14-0283.
    1. Piva SJ, et al. Assessment of inflammatory and oxidative biomarkers in obesity and their associations with body mass index. Inflammation. 2013;36:226–231. doi: 10.1007/s10753-012-9538-2.
    1. Khoo NK, et al. Obesity-induced tissue free radical generation: an in vivo immuno-spin trapping study. Free Radic Biol Med. 2012;52:2312–2319. doi: 10.1016/j.freeradbiomed.2012.04.011.
    1. Samavat H, Kurzer MS. Estrogen metabolism and breast cancer. Cancer Lett. 2015;356:231–243. doi: 10.1016/j.canlet.2014.04.018.
    1. Ziegler RG, Fuhrman BJ, Moore SC, Matthews CE. Epidemiologic studies of estrogen metabolism and breast cancer. Steroids. 2015;99:67–75. doi: 10.1016/j.steroids.2015.02.015.
    1. Stachenfeld NS. Hormonal changes during menopause and the impact on fluid regulation. Reprod Sci. 2014;21:555–561. doi: 10.1177/1933719113518992.
    1. Monteiro R, Teixeira D, Calhau C. Estrogen signaling in metabolic inflammation. Mediators Inflamm. 2014;2014:615917. doi: 10.1155/2014/615917.
    1. Brown KA, Simpson ER. Estrogens, obesity, inflammation, and breast cancer-what is the link? Semin Reprod Med. 2015;33:208–212. doi: 10.1055/s-0035-1552581.
    1. Iseri LT, French JH. Magnesium: nature’s physiologic calcium blocker. Am Heart J. 1984;108:188–193. doi: 10.1016/0002-8703(84)90572-6.
    1. Nielsen FH, Milne DB, Gallagher S, Johnson L, Hoverson B. Moderate magnesium deprivation results in calcium retention and altered potassium and phosphorus excretion by postmenopausal women. Magnes Res. 2007;20:19–31.
    1. Sahmoun AE, Singh BB. Does a higher ratio of serum calcium to magnesium increase the risk for postmenopausal breast cancer? Med Hypotheses. 2010;75:315–318. doi: 10.1016/j.mehy.2010.02.037.
    1. Makrides, M., Crosby, D. D., Bain, E. & Crowther, C. A. Magnesium supplementation in pregnancy. Cochrane Database Syst Rev, D937 (2014).
    1. Tukiendorf A, Rybak Z. New data on ecological analysis of possible relationship between magnesium in drinking water and liver cancer. Magnes Res. 2004;17:46–52.
    1. Zhang CX, et al. Choline and betaine intake is inversely associated with breast cancer risk: a two-stage case-control study in China. Cancer Sci. 2013;104:250–258. doi: 10.1111/cas.12064.
    1. Zhang CX, Ho SC. Validity and reproducibility of a food frequency Questionnaire among Chinese women in Guangdong province. Asia Pac J Clin Nutr. 2009;18:240–250.
    1. Yang, Y. X., Wang, G. Y. & Pan, X. C. China Food Composition. Peking University Medical Press 329 (Beijing, 2002).
    1. Chinese Nutrition Society. Dietary Reference Intakes For Chinese Residents. Chinese Light Manufacturing Press, (In Chinese) (Beijing, 2013).
    1. Cho HJ, Kivimaki M, Bower JE, Irwin MR. Association of C-reactive protein and interleukin-6 with new-onset fatigue in the Whitehall II prospective cohort study. Psychol Med. 2013;43:1773–1783. doi: 10.1017/S0033291712002437.
    1. Zhou BF. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults–study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed Environ Sci. 2002;15:83–96.
    1. Gajewski BJ, et al. Non-normal path analysis in the presence of measurement error and missing data: a Bayesian analysis of nursing homes’ structure and outcomes. Stat Med. 2006;25:3632–3647. doi: 10.1002/sim.2478.
    1. Moghaddam HV, Asadi ZS, Akaberi A, Hashemian M. Intimate partner violence in the eastern part of Iran: a path analysis of risk factors. Issues Ment Health Nurs. 2013;34:619–625. doi: 10.3109/01612840.2013.785616.

Source: PubMed

3
Prenumerera