FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0

Ronald Boellaard, Roberto Delgado-Bolton, Wim J G Oyen, Francesco Giammarile, Klaus Tatsch, Wolfgang Eschner, Fred J Verzijlbergen, Sally F Barrington, Lucy C Pike, Wolfgang A Weber, Sigrid Stroobants, Dominique Delbeke, Kevin J Donohoe, Scott Holbrook, Michael M Graham, Giorgio Testanera, Otto S Hoekstra, Josee Zijlstra, Eric Visser, Corneline J Hoekstra, Jan Pruim, Antoon Willemsen, Bertjan Arends, Jörg Kotzerke, Andreas Bockisch, Thomas Beyer, Arturo Chiti, Bernd J Krause, European Association of Nuclear Medicine (EANM), Ronald Boellaard, Roberto Delgado-Bolton, Wim J G Oyen, Francesco Giammarile, Klaus Tatsch, Wolfgang Eschner, Fred J Verzijlbergen, Sally F Barrington, Lucy C Pike, Wolfgang A Weber, Sigrid Stroobants, Dominique Delbeke, Kevin J Donohoe, Scott Holbrook, Michael M Graham, Giorgio Testanera, Otto S Hoekstra, Josee Zijlstra, Eric Visser, Corneline J Hoekstra, Jan Pruim, Antoon Willemsen, Bertjan Arends, Jörg Kotzerke, Andreas Bockisch, Thomas Beyer, Arturo Chiti, Bernd J Krause, European Association of Nuclear Medicine (EANM)

Abstract

The purpose of these guidelines is to assist physicians in recommending, performing, interpreting and reporting the results of FDG PET/CT for oncological imaging of adult patients. PET is a quantitative imaging technique and therefore requires a common quality control (QC)/quality assurance (QA) procedure to maintain the accuracy and precision of quantitation. Repeatability and reproducibility are two essential requirements for any quantitative measurement and/or imaging biomarker. Repeatability relates to the uncertainty in obtaining the same result in the same patient when he or she is examined more than once on the same system. However, imaging biomarkers should also have adequate reproducibility, i.e. the ability to yield the same result in the same patient when that patient is examined on different systems and at different imaging sites. Adequate repeatability and reproducibility are essential for the clinical management of patients and the use of FDG PET/CT within multicentre trials. A common standardised imaging procedure will help promote the appropriate use of FDG PET/CT imaging and increase the value of publications and, therefore, their contribution to evidence-based medicine. Moreover, consistency in numerical values between platforms and institutes that acquire the data will potentially enhance the role of semiquantitative and quantitative image interpretation. Precision and accuracy are additionally important as FDG PET/CT is used to evaluate tumour response as well as for diagnosis, prognosis and staging. Therefore both the previous and these new guidelines specifically aim to achieve standardised uptake value harmonisation in multicentre settings.

References

    1. Avril NE, Weber WA. Monitoring response to treatment in patients utilizing PET. Radiol Clin North Am. 2005;43(1):189–204. doi: 10.1016/j.rcl.2004.09.006.
    1. Bastiaannet E, Groen H, Jager PL, et al. The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat Rev. 2004;30(1):83–101. doi: 10.1016/j.ctrv.2003.07.004.
    1. Borst GR, Belderbos JSA, Boellaard R, et al. Standardised FDG uptake: a prognostic factor for inoperable non-small cell lung cancer. Eur J Cancer. 2005;41(11):1533–1541. doi: 10.1016/j.ejca.2005.03.026.
    1. Erdi YE. The use of PET for radiotherapy. Curr Med Imaging Rev. 2007;3(1):3–16.
    1. Geus-Oei LF, van der Heijden HF, Corstens FH, Oyen WJ. Predictive and prognostic value of FDG-PET in nonsmall-cell lung cancer: a systematic review. Cancer. 2007;110(8):1654–1664. doi: 10.1002/cncr.22979.
    1. Hoekstra CJ, Stroobants SG, Smit EF, et al. Prognostic relevance of response evaluation using [F-18]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J Clin Oncol. 2005;23(33):8362–8370. doi: 10.1200/JCO.2005.01.1189.
    1. Larson SM, Schwartz LH. 18F-FDG PET as a candidate for “qualified biomarker”: functional assessment of treatment response in oncology. J Nucl Med. 2006;47(6):901–903.
    1. Vansteenkiste JF, Stroobants SG. The role of positron emission tomography with 18F-fluoro-2-deoxy-D-glucose in respiratory oncology. Eur Respir J. 2001;17(4):802–820. doi: 10.1183/09031936.01.17408020.
    1. Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med. 2005;46(6):983–995.
    1. Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of F-18-FDG PET in oncology. J Nucl Med. 2008;49(3):480–508. doi: 10.2967/jnumed.107.047787.
    1. Delgado-Bolton RC, Fernández-Pérez C, González-Maté A, Carreras JL. Meta-analysis of the performance of 18F-FDG PET in primary tumor detection in unknown primary tumors. J Nucl Med. 2003;44(8):1301–14.
    1. Delgado-Bolton RC, Carreras JL, Pérez-Castejón MJ. A systematic review of the efficacy of F-18-FDG PET in unknown primary tumors. Curr Med Imaging Rev. 2006;2(2):215–25.
    1. Jiménez-Requena F, Delgado-Bolton RC, Fernández-Pérez C, et al. Meta-analysis of the performance of (18)F-FDG PET in cutaneous melanoma. Eur J Nucl Med Mol Imaging. 2010;37(2):284–300.
    1. Grégoire V, Chiti A. PET in radiotherapy planning: particularly exquisite test or pending and experimental tool? Radiother Oncol. 2010;96(3):275–276. doi: 10.1016/j.radonc.2010.07.015.
    1. Thorwarth D, Beyer T, Boellaard R, et al. Integration of FDG-PET/CT into external beam radiation therapy planning: technical aspects and recommendations on methodological approaches. Nuklearmedizin. 2012;51(4):140–153. doi: 10.3413/Nukmed-0455-11-12.
    1. Bailey DL, Barthel H, Beuthin-Baumann B, et al. Combined PET/MR: Where are we now? Summary report of the second international workshop on PET/MR imaging April 8-12, 2013, Tubingen, Germany. Mol Imaging Biol. 2014;16(3):295–310.
    1. Bailey DL, Barthel H, Beyer T, et al. Summary report of the first international workshop on PET/MR imaging, March 19–23, 2012, Tubingen, Germany. Mol Imaging Biol. 2013;15(4):361–371. doi: 10.1007/s11307-013-0623-1.
    1. Busemann SE, Plachcinska A, Britten A. Acceptance testing for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging. 2010;37(3):672–681. doi: 10.1007/s00259-009-1348-x.
    1. Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med. 2004;45(9):1431–1434.
    1. Boellaard R, O’Doherty MJ, Weber WA, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37(1):181–200. doi: 10.1007/s00259-009-1297-4.
    1. Delbeke D, Coleman RE, Guiberteau MJ, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47(5):885–895.
    1. Stauss J, Franzius C, Pfluger T, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2008;35(8):1581–1588. doi: 10.1007/s00259-008-0826-x.
    1. Jamar F, Buscombe J, Chiti A, et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54(4):647–658. doi: 10.2967/jnumed.112.112524.
    1. Society of Nuclear Medicine. The SNM procedure guideline for general imaging 6.0. 2010. . Accessed 23 Nov 2014.
    1. ICRP Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication 106. Approved by the Commission in October 2007. Ann ICRP. 2008;38(1-2):1–197. doi: 10.1016/j.icrp.2008.08.002.
    1. Zanotti-Fregonara P, Jan S, Taieb D, et al. Absorbed 18F-FDG dose to the fetus during early pregnancy. J Nucl Med. 2010;51(5):803–805. doi: 10.2967/jnumed.109.071878.
    1. Hicks RJ, Binns D, Stabin MG. Pattern of uptake and excretion of (18)F-FDG in the lactating breast. J Nucl Med. 2001;42(8):1238–1242.
    1. Belohlavek O, Jaruskova M. [18F]FDG-PET scan in patients with fasting hyperglycaemia. Q J Nucl Med Mol Imaging. 2014 (in press)
    1. Dai KS, Tai DY, Ho P, et al. Accuracy of the EasyTouch blood glucose self-monitoring system: a study of 516 cases. Clin Chim Acta. 2004;349(1–2):135–41.
    1. Quantitative Imaging Biomarkers Alliance. Quantitative FDG-PET Technical Committee. UPICT oncology FDG-PET CT protocol. . Accessed 23 Nov 2014
    1. Huang SC. Anatomy of SUV. Standardized uptake value. Nucl Med Biol. 2000;27(7):643–646. doi: 10.1016/S0969-8051(00)00155-4.
    1. Caobelli F, Pizzocaro C, Paghera B, Guerra UP. Proposal for an optimized protocol for intravenous administration of insulin in diabetic patients undergoing (18)F-FDG PET/CT. Nucl Med Commun. 2013;34(3):271–275. doi: 10.1097/MNM.0b013e32835d1034.
    1. Minamimoto R, Takahashi N, Inoue T. FDG-PET of patients with suspected renal failure: standardized uptake values in normal tissues. Ann Nucl Med. 2007;21(4):217–222. doi: 10.1007/s12149-007-0012-4.
    1. Rakheja R, Ciarallo A, Alabed YZ, Hickeson M. Intravenous administration of diazepam significantly reduces brown fat activity on 18F-FDG PET/CT. Am J Nucl Med Mol Imaging. 2011;1(1):29–35.
    1. Soderlund V, Larsson SA, Jacobsson H. Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging. 2007;34(7):1018–1022. doi: 10.1007/s00259-006-0318-9.
    1. Sturkenboom MG, Hoekstra OS, Postema EJ, Zijlstra JM, Berkhof J, Franssen EJ. A randomised controlled trial assessing the effect of oral diazepam on 18F-FDG uptake in the neck and upper chest region. Mol Imaging Biol. 2009;11(5):364–368. doi: 10.1007/s11307-009-0207-2.
    1. Coulden R, Chung P, Sonnex E, Ibrahim Q, Maguire C, Abele J. Suppression of myocardial 18F-FDG uptake with a preparatory “Atkins-style” low-carbohydrate diet. Eur Radiol. 2012;22(10):2221–2228. doi: 10.1007/s00330-012-2478-2.
    1. Lum DP, Wandell S, Ko J, Coel MN. Reduction of myocardial 2-deoxy-2-[18F]fluoro-D-glucose uptake artifacts in positron emission tomography using dietary carbohydrate restriction. Mol Imaging Biol. 2002;4(3):232–237. doi: 10.1016/S1095-0397(01)00062-0.
    1. Varrone A, Asenbaum S, Vander BT, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36(12):2103–2110. doi: 10.1007/s00259-009-1264-0.
    1. Bui KL, Horner JD, Herts BR, Einstein DM. Intravenous iodinated contrast agents: risks and problematic situations. Cleve Clin J Med. 2007;74(5):361–4, 367.
    1. ACR Committee on Drugs and Contrast Media. ACR manual on contrast media, version 9. ACR, American College of Radiology; 2013. ISBN: 978-1-55903-012-0. . Accessed 23 Nov 2014
    1. University of California San Francisco. Department of Radiology and Biomedical Imaging. Contrast administration in patients receiving metformin. . Accessed 23 Nov 2014
    1. European Society of Urogenital Radiology. ESUR guidelines on contrast media. . Accessed 23 Nov 2014
    1. Antoch G, Kuehl H, Kanja J, et al. Dual-modality PET/CT scanning with negative oral contrast agent to avoid artifacts: introduction and evaluation. Radiol. 2004;230(3):879–885. doi: 10.1148/radiol.2303021287.
    1. de Groot EH, Post N, Boellaard R, Wagenaar NR, Willemsen AT, van Dalen JA. Optimized dose regimen for whole-body FDG-PET imaging. EJNMMI Res. 2013;3(1):63. doi: 10.1186/2191-219X-3-63.
    1. EANM Research Ltd (EARL). New EANM FDG PET/CT accreditation specifications for SUV recovery coefficients. . Accessed 23 Nov 2014
    1. Boellaard R, Willemsen AT, Arends B, Visser EP. EARL procedure for assessing PET/CT system specific patient FDG activity preparations for quantitative FDG PET/CT studies. . Accessed 23 Nov 2014.
    1. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45(9):1519–1527.
    1. Boellaard R, Oyen WJ, Hoekstra CJ, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging. 2008;35(12):2320–2333. doi: 10.1007/s00259-008-0874-2.
    1. Masuda Y, Kondo C, Matsuo Y, Uetani M, Kusakabe K. Comparison of imaging protocols for 18F-FDG PET/CT in overweight patients: optimizing scan duration versus administered dose. J Nucl Med. 2009;50(6):844–848. doi: 10.2967/jnumed.108.060590.
    1. Lassmann M, Treves ST. Paediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5.2008) and the 2010 North American consensus guidelines. Eur J Nucl Med Mol Imaging. 2014;41(5):1036–1041. doi: 10.1007/s00259-014-2731-9.
    1. Treves ST, Lassmann M. International guidelines for pediatric radiopharmaceutical administered activities. J Nucl Med. 2014;55(6):869–870. doi: 10.2967/jnumed.114.139980.
    1. Osman MM, Chaar BT, Muzaffar R, et al. 18F-FDG PET/CT of patients with cancer: comparison of whole-body and limited whole-body technique. AJR Am J Roentgenol. 2010;195(6):1397–1403. doi: 10.2214/AJR.09.3731.
    1. Beyer T, Antoch G, Muller S, et al. Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med. 2004;45 Suppl 1:25S–35.
    1. Mawlawi O, Erasmus JJ, Munden RF, et al. Quantifying the effect of IV contrast media on integrated PET/CT: clinical evaluation. AJR Am J Roentgenol. 2006;186(2):308–319. doi: 10.2214/AJR.04.1740.
    1. Quantitative Imaging Biomarkers Alliance. FDG-PET/CT Technical Committee. FDG-PET/CT as an imaging biomarker measuring response to cancer therapy, version 1.05, Publicly Reviewed Version. Quantitative Imaging Biomarkers Alliance; 2013. . Acessed 23 Nov 2014.
    1. Otsuka H, Graham MM, Kubo A, Nishitani H. The effect of oral contrast on large bowel activity in FDG-PET/CT. Ann Nucl Med. 2005;19(2):101–108. doi: 10.1007/BF03027388.
    1. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50 Suppl 1:11S–20.
    1. Westerterp M, Pruim J, Oyen W, et al. Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters. Eur J Nucl Med Mol Imaging. 2007;34(3):392–404. doi: 10.1007/s00259-006-0224-1.
    1. Lasnon C, Desmonts C, Quak E, et al. Harmonizing SUVs in multicentre trials when using different generation PET systems: prospective validation in non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging. 2013;40(7):985–996. doi: 10.1007/s00259-013-2391-1.
    1. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50.
    1. Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–1065. doi: 10.2165/00003088-200544100-00004.
    1. Hallynck TH, Soep HH, Thomis JA, Boelaert J, Daneels R, Dettli L. Should clearance be normalised to body surface or to lean body mass? Br J Clin Pharmacol. 1981;11(5):523–526. doi: 10.1111/j.1365-2125.1981.tb01163.x.
    1. James W. Research on obesity. London: Her Majesty’s Stationery Office; 1976.
    1. Tahari AK, Chien D, Azadi JR, Wahl RL. Optimum lean body formulation for correction of standardized uptake value in PET imaging. J Nucl Med. 2014;55(9):1481–1484. doi: 10.2967/jnumed.113.136986.
    1. Cook GJ, Fogelman I, Maisey MN. Normal physiological and benign pathological variants of 18-fluoro-2-deoxyglucose positron-emission tomography scanning: potential for error in interpretation. Semin Nucl Med. 1996;26(4):308–314. doi: 10.1016/S0001-2998(96)80006-7.
    1. ACR Guidelines and Standards Committee. ACR-SPR practice parameter for performing FDG-PET/CT in oncology. American College of Radiology; 2014. . Accessed 23 Nov 2014.
    1. Young H, Baum R, Cremerius U, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer. 1999;35(13):1773–1782. doi: 10.1016/S0959-8049(99)00229-4.
    1. Itti E, Meignan M, Berriolo-Riedinger A, et al. An international confirmatory study of the prognostic value of early PET/CT in diffuse large B-cell lymphoma: comparison between Deauville criteria and DeltaSUVmax. Eur J Nucl Med Mol Imaging. 2013;40(9):1312–1320. doi: 10.1007/s00259-013-2435-6.
    1. Chung HH, Kwon HW, Kang KW, et al. Prognostic value of preoperative metabolic tumor volume and total lesion glycolysis in patients with epithelial ovarian cancer. Ann Surg Oncol. 2012;19(6):1966–1972. doi: 10.1245/s10434-011-2153-x.
    1. Zhang H, Wroblewski K, Liao S, et al. Prognostic value of metabolic tumor burden from (18)F-FDG PET in surgical patients with non-small-cell lung cancer. Acad Radiol. 2013;20(1):32–40. doi: 10.1016/j.acra.2012.07.002.
    1. The Royal College of Radiologists. Standards for radiology discrepancy meetings. London: The Royal College of Radiologists; 2007. . Accessed 23 Nov 2014.
    1. Andrade RS, Heron DE, Degirmenci B, et al. Posttreatment assessment of response using FDG-PET/CT for patients treated with definitive radiation therapy for head and neck cancers. Int J Radiat Oncol Biol Phys. 2006;65(5):1315–1322. doi: 10.1016/j.ijrobp.2006.03.015.
    1. Kawabe J, Higashiyama S, Yoshida A, Kotani K, Shiomi S. The role of FDG PET-CT in the therapeutic evaluation for HNSCC patients. Jpn J Radiol. 2012;30(6):463–470. doi: 10.1007/s11604-012-0076-5.
    1. Coleman RE, Hillner BE, Shields AF, et al. PET and PET/CT reports: observations from the National Oncologic PET Registry. J Nucl Med. 2010;51(1):158–163. doi: 10.2967/jnumed.109.066399.
    1. Niederkohr RD, Greenspan BS, Prior JO, et al. Reporting guidance for oncologic 18F-FDG PET/CT imaging. J Nucl Med. 2013;54(5):756–761. doi: 10.2967/jnumed.112.112177.
    1. Padhani AR. Imaging in the evaluation of cancer. In: Nicholson T, editor. Recommendations for cross-sectional imaging in cancer management. 2. London: The Royal College of Radiologists; 2014.
    1. Juweid ME, Stroobants S, Hoekstra OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25(5):571–578. doi: 10.1200/JCO.2006.08.2305.
    1. Meignan M, Gallamini A, Haioun C. Report on the First International Workshop on Interim-PET-Scan in Lymphoma. Leuk Lymphoma. 2009;50(8):1257–1260. doi: 10.1080/10428190903040048.
    1. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014. doi:10.1200/JCO.2013.53.5229
    1. Krak NC, Boellaard R, Hoekstra OS, Twisk JWR, Hoekstra CJ, Lammertsma AA. Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging. 2005;32(3):294–301. doi: 10.1007/s00259-004-1566-1.
    1. Frings V, de Langen AJ, Smit EF, et al. Repeatability of metabolically active volume measurements with 18F-FDG and 18F-FLT PET in non-small cell lung cancer. J Nucl Med. 2010;51(12):1870–1877. doi: 10.2967/jnumed.110.077255.
    1. Frings V, van Velden FH, Velasquez LM, et al. Repeatability of metabolically active tumor volume measurements with FDG PET/CT in advanced gastrointestinal malignancies: a multicenter study. Radiology. 2014;273(2):539–548. doi: 10.1148/radiol.14132807.
    1. Schaefer A, Nestle U, Kremp S, et al. Multi-centre calibration of an adaptive thresholding method for PET-based delineation of tumour volumes in radiotherapy planning of lung cancer. Nuklearmedizin. 2012;51(3):101–110. doi: 10.3413/Nukmed-0452-11-12.
    1. Schaefer A, Kremp S, Hellwig D, Rube C, Kirsch CM, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging. 2008;35(11):1989–1999. doi: 10.1007/s00259-008-0875-1.
    1. Geets X, Lee JA, Bol A, Lonneux M, Gregoire V. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging. 2007;34(9):1427–1438. doi: 10.1007/s00259-006-0363-4.
    1. van Dalen JA, Hoffmann AL, Dicken V, et al. A novel iterative method for lesion delineation and volumetric quantification with FDG PET. Nucl Med Commun. 2007;28(6):485–493. doi: 10.1097/MNM.0b013e328155d154.
    1. Hatt M, Lamare F, Boussion N, et al. Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET. Phys Med Biol. 2007;52(12):3467–3491. doi: 10.1088/0031-9155/52/12/010.
    1. Cheebsumon P, Yaqub M, van Velden FH, Hoekstra OS, Lammertsma AA, Boellaard R. Impact of [18F]FDG PET imaging parameters on automatic tumour delineation: need for improved tumour delineation methodology. Eur J Nucl Med Mol Imaging. 2011;38(12):2136–2144. doi: 10.1007/s00259-011-1899-5.
    1. Chiti A, Kirienko M, Grégoire V. Clinical use of PET-CT data for radiotherapy planning: what are we looking for? Radiother Oncol. 2010;96(3):277–279. doi: 10.1016/j.radonc.2010.07.021.
    1. Grégoire V, Chiti A. Molecular imaging in radiotherapy planning for head and neck tumors. J Nucl Med. 2011;52(3):331–334. doi: 10.2967/jnumed.110.075689.
    1. Sattler B, Lee JA, Lonsdale M, Coche E. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning. Radiother Oncol. 2010;96(3):288–297. doi: 10.1016/j.radonc.2010.07.009.
    1. Boktor RR, Walker G, Stacey R, Gledhill S, Pitman AG. Reference range for intrapatient variability in blood-pool and liver SUV for 18F-FDG PET. J Nucl Med. 2013;54(5):677–682. doi: 10.2967/jnumed.112.108530.
    1. Meignan M, Barrington S, Itti E, Gallamini A, Haioun C, Polliack A. Report on the 4th International Workshop on Positron Emission Tomography in Lymphoma held in Menton, France, 3-5 October 2012. Leuk Lymphoma. 2014;55(1):31–37. doi: 10.3109/10428194.2013.802784.
    1. Lockhart CM, MacDonald LR, Alessio AM, McDougald WA, Doot RK, Kinahan PE. Quantifying and reducing the effect of calibration error on variability of PET/CT standardized uptake value measurements. J Nucl Med. 2011;52(2):218–224. doi: 10.2967/jnumed.110.083865.
    1. Greuter HN, Boellaard R, van Lingen A, Franssen EJ, Lammertsma AA. Measurement of 18F-FDG concentrations in blood samples: comparison of direct calibration and standard solution methods. J Nucl Med Technol. 2003;31(4):206–209.
    1. Gadd R, Baker M, Nijran KS, et al. Protocol for establishing and maintaining the calibration of medical radionuclide calibrators and their quality control. . Accessed Sep 2014.
    1. Lasnon C, Hicks RJ, Beauregard JM, et al. Impact of point spread function reconstruction on thoracic lymph node staging with 18F-FDG PET/CT in non-small cell lung cancer. Clin Nucl Med. 2012;37(10):971–976. doi: 10.1097/RLU.0b013e318251e3d1.
    1. Krause BJ, Beyer T, Bockisch A, et al. FDG-PET/CT in oncology. German guideline. Nuklearmedizin. 2007;46(6):291–301. doi: 10.3413/nukmed-282.
    1. Bourguet P, Blanc-Vincent MP, Boneu A, et al. Summary of the standards, options and recommendations for the use of positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose (FDP-PET scanning) in oncology (2002) Br J Cancer. 2003;89(Suppl 1):S84–S91. doi: 10.1038/sj.bjc.6601088.
    1. Coleman RE, Delbeke D, Guiberteau MJ, et al. Concurrent PET/CT with an integrated imaging system: intersociety dialogue from the joint working group of the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance. J Nucl Med. 2005;46(7):1225–1239.
    1. Lammertsma AA, Hoekstra CJ, Giaccone G, Hoekstra OS. How should we analyse FDG PET studies for monitoring tumour response? Eur J Nucl Med Mol Imaging. 2006;33(Suppl 1):16–21. doi: 10.1007/s00259-006-0131-5.
    1. Miller JC, Fischman AJ, Aquino SL, Blake MA, Thrall JH, Lee SI. FDG-PET CT for tumor imaging. J Am Coll Radiol. 2007;4(4):256–259. doi: 10.1016/j.jacr.2006.10.011.
    1. Schelbert HR, Hoh CK, Royal HD, et al. Procedure guideline for tumor imaging using fluorine-18-FDG. Society of Nuclear Medicine. J Nucl Med. 1998;39(7):1302–1305.
    1. Shankar LK, Hoffman JM, Bacharach S, et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med. 2006;47(6):1059–1066.
    1. Zijlstra JM, Comans EF, van Lingen A, et al. FDG PET in lymphoma: the need for standardization of interpretation. An observer variation study. Nucl Med Commun. 2007;28(10):798–803. doi: 10.1097/MNM.0b013e3282eff2d5.

Source: PubMed

3
Prenumerera