Resistance of the respiratory system measured with forced oscillation technique (FOT) correlates with bronchial thermoplasty response

Annika W M Goorsenberg, Julia N S d'Hooghe, Annelies M Slats, Joost G van den Aardweg, Jouke T Annema, Peter I Bonta, Annika W M Goorsenberg, Julia N S d'Hooghe, Annelies M Slats, Joost G van den Aardweg, Jouke T Annema, Peter I Bonta

Abstract

Background: Bronchial Thermoplasty (BT) is an endoscopic treatment for severe asthma using radiofrequency energy to target airway remodeling including smooth muscle. The correlation of pulmonary function tests and BT response are largely unknown. Forced Oscillation Technique (FOT) is an effort-independent technique to assess respiratory resistance (Rrs) by using pressure oscillations including small airways.

Aim: To investigate the effect of BT on pulmonary function, assessed by spirometry, bodyplethysmography and FOT and explore associations between pulmonary function parameters and BT treatment response.

Methods: Severe asthma patients recruited to the TASMA trial were analyzed in this observational cohort study. Spirometry, bodyplethysmography and FOT measurements were performed before and 6 months after BT. Asthma questionnaires (AQLQ/ACQ-6) were used to assess treatment response.

Results: Twenty-four patients were analyzed. AQLQ and ACQ improved significantly 6 months after BT (AQLQ 4.15 (±0.96) to 4.90 (±1.14) and ACQ 2.64 (±0.60) to 2.11 (±1.04), p = 0.004 and p = 0.02 respectively). Pulmonary function parameters remained stable. Improvement in FEV1 correlated with AQLQ change (r = 0.45 p = 0.03). Lower respiratory resistance (Rrs) at baseline (both 5 Hz and 19 Hz) significantly correlated to AQLQ improvement (r = - 0.52 and r = - 0.53 respectively, p = 0.01 (both)). Borderline significant correlations with ACQ improvement were found (r = 0.30 p = 0.16 for 5 Hz and r = 0.41 p = 0.05 for 19 Hz).

Conclusion: Pulmonary function remained stable after BT. Improvement in FEV1 correlated with asthma questionnaires improvement including AQLQ. Lower FOT-measured respiratory resistance at baseline was associated with favorable BT response, which might reflect targeting of larger airways with BT.

Trial registration: ClinicalTrials.gov Identifier: NCT02225392; Registered 26 August 2014.

Keywords: Bronchial thermoplasty; Forced oscillation technique; Respiratory function tests; Severe asthma; Small airways.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Correlation between asthma questionnaire AQLQ and ACQ-6 changes and pre-BD FEV1(% predicted) change after BT. An improvement in AQLQ (n = 22) (a) and ACQ (n = 23) (b) is correlated with post-BT change in FEV1 (%) pre-BD. FEV1, forced expiratory volume in 1 s; BD, bronchodilation; BT, Bronchial Thermoplasty; AQLQ, asthma quality of life questionnaire; ACQ, asthma control questionnaire
Fig. 2
Fig. 2
Associations between asthma questionnaire AQLQ and ACQ-6 changes and respiratory resistance measured with FOT at baseline (5 Hz and 19 Hz). A negative correlation was found between AQLQ improvement and baseline respiratory resistance at both 5 Hz (a) and 19 Hz (b). A positive correlation was seen between ACQ improvement and baseline respiratory resistance at both 5 Hz (c) and 19 Hz (d). FOT, forced oscillation technique; AQLQ, asthma quality of life questionnaire; ACQ, asthma control questionnaire; Rrs, respiratory resistance in cmH2O.s/L; BT, bronchial thermoplasty; BD, bronchodilation

References

    1. Pretolani M, Dombret MC, Thabut G, Knap D, Hamidi F, Debray MP, et al. Reduction of airway smooth muscle mass by bronchial thermoplasty in patients with severe asthma. Am J Respir Crit Care Med. 2014;190:1452–1454. doi: 10.1164/rccm.201407-1374LE.
    1. Denner DR, Doeing DC, Hogarth DK, Dugan K, Naureckas ET, White SR. Airway inflammation after bronchial thermoplasty for severe asthma. Ann Am Thorac Soc. 2015;12:1302–1309. doi: 10.1513/AnnalsATS.201502-082OC.
    1. Chakir J, Haj-Salem I, Gras D, Joubert P, Beaudoin EL, Biardel S, et al. Effects of bronchial thermoplasty on airway smooth muscle and collagen deposition in asthma. Ann Am Thorac Soc. 2015;12:1612–1618.
    1. Pretolani M, Bergqvist A, Thabut G, Dombret MC, Knapp D, Hamidi F, et al. Effectiveness of bronchial thermoplasty in patients with severe refractory asthma: clinical and histopathologic correlations. J Allergy Clin Immunol. 2017;139:1176–1185. doi: 10.1016/j.jaci.2016.08.009.
    1. d’Hooghe JNS, Goorsenberg AWM, ten Hacken NHT, Weersink EJM, Roelofs JJTH, Mauad D, et al. Airway smooth muscle reduction after bronchial thermoplasty in severe asthma correlates with FEV1. Clin Exp Immunol. 2019;49(4):541–544.
    1. Cox G, Thomson NC, Rubin AS, Niven RM, Corris PA, Siersted HC, et al. Asthma control during the year after bronchial thermoplasty. N Engl J Med. 2007;356:1327–1337. doi: 10.1056/NEJMoa064707.
    1. Pavord ID, Cox G, Thomson NC, Rubin AS, Corris PA, Niven RM, et al. Safety and efficacy of bronchial thermoplasty in symptomatic, severe asthma. Am J Respir Crit Care Med. 2007;176:1185–1191. doi: 10.1164/rccm.200704-571OC.
    1. Castro M, Rubin AS, Laviolette M, Fiterman J, De Andrade LM, Shah PL, et al. Effectiveness and safety of bronchial thermoplasty in the treatment of severe asthma: a multicenter, randomized, double-blind, sham-controlled clinical trial. Am J Respir Crit Care Med. 2010;181:116–124. doi: 10.1164/rccm.200903-0354OC.
    1. Oostveen E, MacLeod D, Lorino H, Farre R, Hantos Z, Desager K, et al. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J. 2003;22:1026–1041. doi: 10.1183/09031936.03.00089403.
    1. McNulty W, Usmani OS. Techniques of assessing small airways dysfunction. Eur Clin Respir J. 2014. 10.3402/ecrj.v1.25898.
    1. Anderson WJ, Zajda E, Lipworth BJ. Are we overlooking persistent small airways dysfunction in community-managed asthma? Ann Allergy Asthma Immunol. 2012;109(3):185–189. doi: 10.1016/j.anai.2012.06.022.
    1. Kaminsky DA, Bates JHT. Breathing In and Out: Airway Resistance. In: Kaminsky DA, Irvin CG, editors. Pulmonary Function Testing. Principles and Practice. Cham: Humana press; 2018. pp. 127–150.
    1. Bousquet J, Mantzouranis E, Cruz, Ait-Khaled N, Baena-Cagnani CE, Bleecker ER, et al. Uniform definition of asthma severity, control, and exacerbations: document presented for the World Health Organization Consultation on Severe Asthma. J Allergy Clin Immunol. 2010;126:926–938. doi: 10.1016/j.jaci.2010.07.019.
    1. Bel EH, Sousa A, Fleming L, Bush A, Chung KF, Versnel J, et al. Diagnosis and definition of severe refractory asthma: an international consensus statement from the innovative medicine initiative (IMI) Thorax. 2011;66:910–917. doi: 10.1136/thx.2010.153643.
    1. Cox G, Miller JD, McWilliams A, Fitzgerald JM, Lam S. Bronchial thermoplasty for asthma. Am J Respir Crit Care Med. 2006;173:965–969. doi: 10.1164/rccm.200507-1162OC.
    1. d’Hooghe JNS, Ten Hacken NHT, Weersink EJM, Sterk PJ, Annema JT, Bonta PI. Emerging understanding of the mechanism of action of bronchial thermoplasty in asthma. Pharmacol Ther. 2018;181:101–107. doi: 10.1016/j.pharmthera.2017.07.015.
    1. Bonta PI, Chanez P, Annema JT, Shah PL, Niven R. Bronchial thermoplasty in severe asthma: best practice recommendations from an expert panel. Respiration. 2018;95(5):289–300. doi: 10.1159/000488291.
    1. d’Hooghe JN, Eberl S, Annema JT, Bonta PI. Propofol and remifentanil sedation for bronchial thermoplasty: a prospective cohort trial. Respiration. 2017;93:58–64. doi: 10.1159/000452478.
    1. Juniper EF, O'Byrne PM, Guyatt GH, Ferrie PJ, King DR. Development and validation of a questionnaire to measure asthma control. Eur Respir J. 1999;14(4):902–907. doi: 10.1034/j.1399-3003.1999.14d29.x.
    1. Juniper EF, Buist AS, Cox FM, Ferrie PJ, King DR. Validation of a standardized version of the asthma quality of life questionnaire. Chest. 1999;115:1265–1270. doi: 10.1378/chest.115.5.1265.
    1. Chupp G, Laviolette M, Cohn L, McEvoy C, Bansal S, Shifren A, et al. Long-term outcomes of bronchial thermoplasty in subjects with severe asthma: a comparison of 3-year follow-up results from two prospective multicentre studies. Eur Respir J. 2017;(2):50. 10.1183/13993003.00017-2017.
    1. Langton D, Ing A, Bennetts K, Wang W, Farah C, Peters M, et al. Bronchial thermoplasty reduces gas trapping in severe asthma. BMC Pulm Med. 2018;18:155. doi: 10.1186/s12890-018-0721-6.
    1. Langton D, Ing A, Sha J, Bennetts K, Hersch N, Kwok M, et al. Measuring the effects of bronchial thermoplasty using oscillometry. Respirology. 2018;24(5):431–436. doi: 10.1111/resp.13439.
    1. Donovan GM, Elliot JG, Green FHY, James AL, Noble PB. Unravelling a clinical paradox – why does bronchial thermoplasty work in asthma? Am J Respir Cell Mol Biol. 2018;59:355–362. doi: 10.1165/rcmb.2018-0011OC.
    1. Zanon M, Strieder DL, Rubin AS, Watte G, Marchiori E, Cardoso PFG, et al. Use of MDCT to assess the results of bronchial Thermoplasty. Am J Roentgenol. 2017;209(4):752–756. doi: 10.2214/AJR.17.18027.
    1. Konietzke P, Weinheimer O, Wielputz MO, Wagner WL, Kaukel P, Eberhardt R, et al. Quantitative CT detects changes in airway dimensions and air-trapping after bronchial thermoplasty for severe asthma. Eur J Radiol. 2018;107:33–38. doi: 10.1016/j.ejrad.2018.08.007.
    1. Ishii S, Iikura M, Shimoda Y, Izumi S, Hojo M, Sugiyama H. Evaluation of expiratory capacity with severe asthma following bronchial thermoplasty. Respirol Case Rep. 2018;7(1):e00387.
    1. Postma DS, Brightling C, Baldi S, Van den Berge M, Fabbri LM, Gagnatelli A, et al. Exploring the relevance and extent of small airways dysfunction in asthma (ATLANTIS): baseline data form a prospective cohort study. Lancet Respir Med. 2019;7(5):402–416. doi: 10.1016/S2213-2600(19)30049-9.

Source: PubMed

3
Prenumerera