Does closed-loop automated oxygen control reduce the duration of mechanical ventilation? A randomised controlled trial in ventilated preterm infants

Ourania Kaltsogianni, Theodore Dassios, Anne Greenough, Ourania Kaltsogianni, Theodore Dassios, Anne Greenough

Abstract

Background: Many preterm infants require supplemental oxygen in the newborn period but experience frequent fluctuations of their oxygen saturation levels. Intermittent episodes of hypoxia or hyperoxia increase the risk of complications. Compliance with achievement of oxygen saturation targets is variable, and the need for frequent adjustments of the inspired oxygen concentration increases workload. Closed-loop automated oxygen control systems (CLAC) improve achievement of oxygen saturation targets and reduce both episodes of hypoxia and hyperoxia and the number of manual adjustments. This study investigates whether CLAC compared with manual oxygen control reduces the duration of mechanical ventilation in preterm infants born at less than 31 weeks of gestation.

Methods: This randomised controlled trial performed at a single tertiary neonatal unit is recruiting 70 infants born at less than 31 weeks of gestational age and within 48 h of initiation of mechanical ventilation. Infants are randomised to CLAC or manual oxygen control from recruitment until successful extubation. The primary outcome is the duration of mechanical ventilation, and secondary outcomes are the percentage of time spent within target oxygen saturation ranges, the time spent in hypoxia or hyperoxia, the number of manual adjustments required, the number of days on oxygen, the incidence of bronchopulmonary dysplasia and the length and cost of neonatal unit stay. The study is performed following informed parental consent and was approved by the Yorkshire and the Humber-Sheffield Research Ethics Committee (protocol version 1.1, 13 July 2021).

Discussion: This trial will investigate the effect of CLAC on the duration of mechanical ventilation, which is an important clinical outcome as prolonged mechanical ventilation is associated with important adverse outcomes, such as bronchopulmonary dysplasia.

Trial registration: ClinicalTrials.Gov NCT05030337 . Registered on 17 August 2021.

Keywords: Closed loop automated oxygen control; Intermittent hypoxemia and hyperoxemia; Mechanical ventilation; Preterm infants.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Trial flowchart (protocol v1.1, 13 July 2021)
Fig. 2
Fig. 2
SPIRIT figure of trial interventions and timings

References

    1. Office for National Statistics. Birth Characteristics in England and Wales. 2019. Accessed: .
    1. Palod PHLB, Sonar MN, Bajaj SP. A study of clinical profile for neonates with respiratory distress and predictors of their survival admitted in neonatal intensive care unit of tertiary care hospital. Int J Contemp Pediatr. 2017;4:2027–31.
    1. Tracy MK, Berkelhamer SK. Bronchopulmonary dysplasia and pulmonary outcomes of prematurity. Pediatr Ann. 2019;48(4):e148–ee53. doi: 10.3928/19382359-20190325-03.
    1. Greenough A. Long-term respiratory consequences of premature birth at less than 32 weeks of gestation. Early Hum Dev. 2013;89(Suppl 2):S25–S27. doi: 10.1016/j.earlhumdev.2013.07.004.
    1. Cannavo L, Rulli I, Falsaperla R, Corsello G, Gitto E. Ventilation, oxidative stress and risk of brain injury in preterm newborn. Ital J Pediatr. 2020;46(1):100. doi: 10.1186/s13052-020-00852-1.
    1. Chaves-Samaniego MJ, Garcia Castejon M, Chaves-Samaniego MC, Solans Perez Larraya A, Ortega Molina JM, Munoz Hoyos A, et al. Risk calculator for retinopathy of prematurity requiring treatment. Front Pediatr. 2020;8:529639. doi: 10.3389/fped.2020.529639.
    1. Askie LM, Henderson-Smart DJ, Irwig L, Simpson JM. Oxygen-saturation targets and outcomes in extremely preterm infants. N Engl J Med. 2003;349(10):959–967. doi: 10.1056/NEJMoa023080.
    1. The STOP-ROP Multicenter Study Group. Supplemental Therapeutic Oxygen for Prethreshold Retinopathy Of Prematurity (STOP-ROP), a randomized, controlled trial. I: primary outcomes. Pediatrics. 2000;105(2):295–310. 10.1542/peds.105.2.295.
    1. Saugstad OD, Aune D. In search of the optimal oxygen saturation for extremely low birth weight infants: a systematic review and meta-analysis. Neonatology. 2011;100(1):1–8. doi: 10.1159/000322001.
    1. Australia B-I, United Kingdom Collaborative G. Tarnow-Mordi W, Stenson B, Kirby A, Juszczak E, et al. Outcomes of two trials of oxygen-saturation targets in preterm infants. N Engl J Med. 2016;374(8):749–760. doi: 10.1056/NEJMoa1514212.
    1. Di Fiore JMBJ, Orge F, Schutt A, Schluchter M, Cheruvu VK, Walsh M, Finer N, Martin RJ. A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity. J Pediatr. 2010;157(1):69–73. doi: 10.1016/j.jpeds.2010.01.046.
    1. Poets CF, Roberts RS, Schmidt B, Whyte RK, Asztalos EV, Bader D, Bairam A, Moddemann D, Peliowski A, Rabi Y, Solimano A, Nelson H. Association between intermittent hypoxemia or bradycardia and late death or disability in extremely preterm infants. JAMA. 2015;314(6):595–603. doi: 10.1001/jama.2015.8841.
    1. Hagadorn JI, Furey AM, Nghiem TH, Schmid CH, Phelps DL, Pillers DA, et al. Achieved versus intended pulse oximeter saturation in infants born less than 28 weeks' gestation: the AVIOx study. Pediatrics. 2006;118(4):1574–1582. doi: 10.1542/peds.2005-0413.
    1. Sink DW, Hope SA, Hagadorn JI. Nurse:patient ratio and achievement of oxygen saturation goals in premature infants. Arch Dis Child Fetal Neonatal Ed. 2011;96(2):F93–F98. doi: 10.1136/adc.2009.178616.
    1. Dani C. Automated control of inspired oxygen (FiO2 ) in preterm infants: literature review. Pediatr Pulmonol. 2019;54(3):358–363. doi: 10.1002/ppul.24238.
    1. Dargaville PA, Sadeghi Fathabadi O, Plottier GK, Lim K, Wheeler KI, Jayakar R, Gale TJ. Development and preclinical testing of an adaptive algorithm for automated control of inspired oxygen in the preterm infant. Arch Dis Child Fetal Neonatal Ed. 2017;102(1):F31–FF6. doi: 10.1136/archdischild-2016-310650.
    1. Plottier GK, Wheeler KI, Ali SK, Fathabadi OS, Jayakar R, Gale TJ, et al. Clinical evaluation of a novel adaptive algorithm for automated control of oxygen therapy in preterm infants on non-invasive respiratory support. Arch Dis Child Fetal Neonatal Ed. 2017;102(1):F37–F43. doi: 10.1136/archdischild-2016-310647.
    1. Sturrock S, Ambulkar H, Williams EE, Sweeney S, Bednarczuk NF, Dassios T, Greenough A. A randomised crossover trial of closed loop automated oxygen control in preterm, ventilated infants. Acta Paediatr. 2021;110(3):833–837. doi: 10.1111/apa.15585.
    1. Sturrock S, Williams E, Dassios T, Greenough A. Closed loop automated oxygen control in neonates-A review. Acta Paediatr. 2020;109(5):914–922. doi: 10.1111/apa.15089.
    1. van Kaam AH, Hummler HD, Wilinska M, Swietlinski J, Lal MK, te Pas AB, et al. Automated versus manual oxygen control with different saturation targets and modes of respiratory support in preterm infants. J Pediatr. 2015;167(3):545–50e1-2. doi: 10.1016/j.jpeds.2015.06.012.
    1. Wilinska M, Bachman T, Swietlinski J, Kostro M, Twardoch-Drozd M. Automated FiO2-SpO2 control system in neonates requiring respiratory support: a comparison of a standard to a narrow SpO2 control range. BMC Pediatr. 2014;14(1):130. doi: 10.1186/1471-2431-14-130.
    1. Reynolds PR, Miller TL, Volakis LI, Holland N, Dungan GC, Roehr CC, Ives K. Randomised cross-over study of automated oxygen control for preterm infants receiving nasal high flow. Arch Dis Child Fetal Neonatal Ed. 2019;104(4):F366–FF71. doi: 10.1136/archdischild-2018-315342.
    1. Claure N, Bancalari E, D'Ugard C, Nelin L, Stein M, Ramanathan R, Hernandez R, Donn SM, Becker M, Bachman T. Multicenter crossover study of automated control of inspired oxygen in ventilated preterm infants. Pediatrics. 2011;127(1):e76–e83. doi: 10.1542/peds.2010-0939.
    1. Hunt KA, Dassios T, Ali K, Greenough A. Prediction of bronchopulmonary dysplasia development. Arch Dis Child Fetal Neonatal Ed. 2018;103(6):F598–F5F9. doi: 10.1136/archdischild-2018-315343.
    1. Dimitriou G, Greenough A, Endo A, Cherian S, Rafferty GF. Prediction of extubation failure in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2002;86(1):F32–F35. doi: 10.1136/fn.86.1.F32.
    1. Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, Dickersin K, Hrobjartsson A, Schulz KF, Parulekar WR, Krleza-Jeric K, Laupacis A, Moher D. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586.
    1. Vliegenthart RJS, van Kaam AH, Aarnoudse-Moens CSH, van Wassenaer AG, Onland W. Duration of mechanical ventilation and neurodevelopment in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2019;104(6):F631–F6F5. doi: 10.1136/archdischild-2018-315993.
    1. Salverda HH, Oldenburger NJ, Rijken M, Pauws SC, Dargaville PA, Te Pas AB. The effect of automated oxygen control on clinical outcomes in preterm infants: a pre- and post-implementation cohort study. Eur J Pediatr. 2021;180(7):2107–2113. doi: 10.1007/s00431-021-03982-8.
    1. Hallenberger A, Poets CF, Horn W, Seyfang A, Urschitz MS, Group CS Closed-loop automatic oxygen control (CLAC) in preterm infants: a randomized controlled trial. Pediatrics. 2014;133(2):e379–e385. doi: 10.1542/peds.2013-1834.
    1. Urschitz MS, Horn W, Seyfang A, Hallenberger A, Herberts T, Miksch S, Popow C, Müller-Hansen I, Poets CF. Automatic control of the inspired oxygen fraction in preterm infants: a randomized crossover trial. Am J Respir Crit Care Med. 2004;170(10):1095–1100. doi: 10.1164/rccm.200407-929OC.
    1. Weisz DE, Yoon E, Dunn M, Emberley J, Mukerji A, Read B, Shah PS, Canadian Neonatal Network Investigators Duration of and trends in respiratory support among extremely preterm infants. Arch Dis Child Fetal Neonatal Ed. 2021;106(3):286–291. doi: 10.1136/archdischild-2020-319496.

Source: PubMed

3
Prenumerera