Hippocampal dosimetry correlates with the change in neurocognitive function after hippocampal sparing during whole brain radiotherapy: a prospective study

Ping-Fang Tsai, Chi-Cheng Yang, Chi-Cheng Chuang, Ting-Yi Huang, Yi-Ming Wu, Ping-Ching Pai, Chen-Kan Tseng, Tung-Ho Wu, Yi-Liang Shen, Shinn-Yn Lin, Ping-Fang Tsai, Chi-Cheng Yang, Chi-Cheng Chuang, Ting-Yi Huang, Yi-Ming Wu, Ping-Ching Pai, Chen-Kan Tseng, Tung-Ho Wu, Yi-Liang Shen, Shinn-Yn Lin

Abstract

Background: Whole brain radiotherapy (WBRT) has been the treatment of choice for patients with brain metastases. However, change/decline of neurocognitive functions (NCFs) resulting from impaired hippocampal neurogenesis might occur after WBRT. It is reported that conformal hippocampal sparing would provide the preservation of NCFs. Our study aims to investigate the hippocampal dosimetry and to demonstrate the correlation between hippocampal dosimetry and neurocognitive outcomes in patients receiving hippocampal sparing during WBRT (HS-WBRT).

Methods: Forty prospectively recruited cancer patients underwent HS-WBRT for therapeutic or prophylactic purposes. Before receiving HS-WBRT, all participants received a battery of baseline neurocognitive assessment, including memory, executive functions and psychomotor speed. The follow-up neurocognitive assessment at 4 months after HS-WBRT was also performed. For the delivery of HS-WBRT, Volumetric Modulated Arc Therapy (VMAT) with two full arcs and two non-coplanar partial arcs was employed. For each treatment planning, dose volume histograms were generated for left hippocampus, right hippocampus, and the composite hippocampal structure respectively. Biologically equivalent doses in 2-Gy fractions (EQD2) assuming an alpha/beta ratio of 2 Gy were computed. To perform analyses addressing the correlation between hippocampal dosimetry and the change in scores of NCFs, pre- and post-HS-WBRT neurocognitive assessments were available in 24 patients in this study.

Results: Scores of NCFs were quite stable before and after HS-WBRT in terms of hippocampus-dependent memory. Regarding verbal memory, the corresponding EQD2 values of 0, 10, 50, 80 % irradiating the composite hippocampal structure with <12.60 Gy, <8.81, <7.45 Gy and <5.83 Gy respectively were significantly associated with neurocognitive preservation indicated by the immediate recall of Word List Test of Wechsler Memory Scale-III. According to logistic regression analyses, it was noted that dosimetric parameters specific to left sided hippocampus exerted an influence on immediate recall of verbal memory (adjusted odds ratio, 4.08; p-value, 0.042, predicting patients' neurocognitive decline after receiving HS-WBRT).

Conclusions: Functional preservation by hippocampal sparing during WBRT is indeed achieved in our study. Providing that modern VMAT techniques can reduce the dose irradiating bilateral hippocampi below dosimetric threshold, patients should be recruited in prospective trials of hippocampal sparing during cranial irradiation to accomplish neurocognitive preservation while maintaining intracranial control.

Trial registration: Current Controlled Trials NCT02504788.

Figures

Fig. 1
Fig. 1
An example of hippocampi contouring was demonstrated in (a) Axial, (b) Coronal and (c) Sagittal views. The bilateral hippocampal structures were contoured in yellow color. The zone for hippocampus avoidance (HA zone) was marked in orange. d Treatment planning was designed and arranged by four arcs in a VMAT plan, in which two full arcs and two non-coplanar partial arcs were employed
Fig. 2
Fig. 2
An example of 90 % isodose distribution in the display modes of color wash and dose volume histogram (DVH). a Axial, b Coronal, c agittal views and (d) The displayed DVH is in accordance with the prescription of 3000 cGy in physical dose. The yellow curve outlines where the bilateral hippocampal structures are, red for PTV, blue for CTV, and orange for the region of gross tumor or tumor bed
Fig. 3
Fig. 3
The isodose region without added color display represents the site of hippocampal sparing. The 40 % isodose displayed in color wash indicates where our VMAT treatment plan has attempted to achieve so-called hippocampal sparing
Fig. 4
Fig. 4
Scatter plots displaying the association between hippocampal dosimetry and neurocognitive functions. Each colored dot represents the change in the NCF scores obtained between before and after the HS-WBRT course for each individual patient. Horizontal axis indicates the hippocampal dosimetry irradiating left hippocampus in a unit of Gy converted to the equivalent dose in 2-Gy fractions (EQD2). Vertical axis represents the extent of the NCF change; negative values indicate that there is a specific neurocognitive decline in immediate recall of verbal memory (WLL-IR) after the course of HS-WBRT. Of note, a dotted vertical line in each panel stands for the median dose irradiating left hippocampus in a unit of Gy (EQD2). Moreover, the shadowed areas in each panel support the theoretical hypothesis that the higher EQD2 the hippocampus receives, the less likely the corresponding NCF is to be spared

References

    1. Norden AD, Wen PY, Kesari S. Brain metastases. Curr Opin Neurol. 2005;18(6):654–61.
    1. Koay E, Sulman EP. Management of brain metastasis: past lessons, modern management, and future considerations. Curr Oncol Rep. 2012;14(1):70–8. doi: 10.1007/s11912-011-0205-9.
    1. Maclean J, Fersht N, Singhera M, Mulholland P, McKee O, Kitchen N, et al. Multi-disciplinary management for patients with oligometastases to the brain: results of a 5 year cohort study. Radiat Oncol. 2013;8:156. doi: 10.1186/1748-717X-8-156.
    1. Slotman B, Faivre-Finn C, Kramer G, Rankin E, Snee M, Hatton M, et al. Prophylactic cranial irradiation in extensive small-cell lung cancer. N Engl J Med. 2007;357(7):664–72. doi: 10.1056/NEJMoa071780.
    1. Aoyama H, Tago M, Kato N, Toyoda T, Kenjyo M, Hirota S, et al. Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys. 2007;68(5):1388–95. doi: 10.1016/j.ijrobp.2007.03.048.
    1. Kocher M, Soffietti R, Abacioglu U, Villa S, Fauchon F, Baumert BG, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952–26001 study. J Clin Oncol. 2011;29(2):134–41. doi: 10.1200/JCO.2010.30.1655.
    1. Sun A, Bae K, Gore EM, Movsas B, Wong SJ, Meyers CA, et al. Phase III trial of prophylactic cranial irradiation compared with observation in patients with locally advanced non-small-cell lung cancer: neurocognitive and quality-of-life analysis. J Clin Oncol. 2011;29(3):279–86. doi: 10.1200/JCO.2010.29.6053.
    1. Welzel G, Fleckenstein K, Schaefer J, Hermann B, Kraus-Tiefenbacher U, Mai SK, et al. Memory function before and after whole brain radiotherapy in patients with and without brain metastases. Int J Radiat Oncol Biol Phys. 2008;72(5):1311–8. doi: 10.1016/j.ijrobp.2008.03.009.
    1. Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. 1957. J Neuropsychiatry Clin Neurosci. 2000;12(1):103–13. doi: 10.1176/jnp.12.1.103-a.
    1. Hellstrom NA, Bjork-Eriksson T, Blomgren K, Kuhn HG. Differential recovery of neural stem cells in the subventricular zone and dentate gyrus after ionizing radiation. Stem Cells. 2009;27(3):634–41. doi: 10.1634/stemcells.2008-0732.
    1. Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res. 2003;63(14):4021–7.
    1. Raber J, Rola R, LeFevour A, Morhardt D, Curley J, Mizumatsu S, et al. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res. 2004;162(1):39–47. doi: 10.1667/RR3206.
    1. Rola R, Raber J, Rizk A, Otsuka S, VandenBerg SR, Morhardt DR, et al. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol. 2004;188(2):316–30. doi: 10.1016/j.expneurol.2004.05.005.
    1. Lam LC, Leung SF, Chan YL. Progress of memory function after radiation therapy in patients with nasopharyngeal carcinoma. J Neuropsychiatry Clin Neurosci. 2003;15(1):90–7. doi: 10.1176/jnp.15.1.90.
    1. Ali AN, Ogunleye T, Hardy CW, Shu HK, Curran WJ, Crocker IR. Improved hippocampal dose with reduced margin radiotherapy for glioblastoma multiforme. Radiat Oncol. 2014;9:20. doi: 10.1186/1748-717X-9-20.
    1. Gondi V, Hermann BP, Mehta MP, Tome WA. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys. 2012;83(4):e487–93. doi: 10.1016/j.ijrobp.2011.10.021.
    1. Marsh JC, Ziel GE, Diaz AZ, Wendt JA, Gobole R, Turian JV. Integral dose delivered to normal brain with conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy IMRT during partial brain radiotherapy for high-grade gliomas with and without selective sparing of the hippocampus, limbic circuit and neural stem cell compartment. J Med Imaging Radiat Oncol. 2013;57(3):378–83. doi: 10.1111/1754-9485.12048.
    1. Han G, Liu D, Gan H, Denniston KA, Li S, Tan W, et al. Evaluation of the dosimetric feasibility of hippocampal sparing intensity-modulated radiotherapy in patients with locally advanced nasopharyngeal carcinoma. PLoS One. 2014;9(2) doi: 10.1371/journal.pone.0090007.
    1. Khodayari B, Michaud AL, Stanic S, Wooten OH, Dublin A, Purdy JA, et al. Evaluation of hippocampus dose for patients undergoing intensity-modulated radiotherapy for nasopharyngeal carcinoma. Br J Radiol. 2014;87(1037):20130474. doi: 10.1259/bjr.20130474.
    1. Ghia A, Tome WA, Thomas S, Cannon G, Khuntia D, Kuo JS, et al. Distribution of brain metastases in relation to the hippocampus: implications for neurocognitive functional preservation. Int J Radiat Oncol Biol Phys. 2007;68(4):971–7. doi: 10.1016/j.ijrobp.2007.02.016.
    1. Truc G, Martin E, Mirjolet C, Chamois J, Petitfils A, Crehange G. The role of whole brain radiotherapy with hippocampal-sparing. Cancer Radiother. 2013;17(5–6):419–23. doi: 10.1016/j.canrad.2013.06.042.
    1. Gondi V, Pugh SL, Tome WA, Caine C, Corn B, Kanner A, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol. 2014;32(34):3810–6. doi: 10.1200/JCO.2014.57.2909.
    1. Gondi V, Tolakanahalli R, Mehta MP, Tewatia D, Rowley H, Kuo JS, et al. Hippocampal-sparing whole-brain radiotherapy: a “how-to” technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78(4):1244–52. doi: 10.1016/j.ijrobp.2010.01.039.
    1. Oskan F, Ganswindt U, Schwarz SB, Manapov F, Belka C, Niyazi M. Hippocampus sparing in whole-brain radiotherapy. A review. Strahlentherapie Und Onkologie. 2014;190(4):337–41. doi: 10.1007/s00066-013-0518-8.
    1. Prokic V, Wiedenmann N, Fels F, Schmucker M, Nieder C, Grosu AL. Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: a planning study on treatment concepts. Int J Radiat Oncol Biol Phys. 2013;85(1):264–70. doi: 10.1016/j.ijrobp.2012.02.036.
    1. Marsh JC, Herskovic AM, Gielda BT, Hughes FF, Hoeppner T, Turian J, et al. Intracranial metastatic disease spares the limbic circuit: a review of 697 metastatic lesions in 107 patients. Int J Radiat Oncol Biol Phys. 2010;76(2):504–12. doi: 10.1016/j.ijrobp.2009.02.038.
    1. Wan JF, Zhang SJ, Wang L, Zhao KL. Implications for preserving neural stem cells in whole brain radiotherapy and prophylactic cranial irradiation: a review of 2270 metastases in 488 patients. J Radiat Res. 2013;54(2):285–91. doi: 10.1093/jrr/rrs085.
    1. Gaspar L, Scott C, Rotman M, Asbell S, Phillips T, Wasserman T, et al. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys. 1997;37(4):745–51. doi: 10.1016/S0360-3016(96)00619-0.
    1. Gaspar LE, Scott C, Murray K, Curran W. Validation of the RTOG recursive partitioning analysis (RPA) classification for brain metastases. Int J Radiat Oncol Biol Phys. 2000;47(4):1001–6. doi: 10.1016/S0360-3016(00)00547-2.
    1. Castilla-Ortega E, Pedraza C, Estivill-Torrus G, Santin LJ. When is adult hippocampal neurogenesis necessary for learning? evidence from animal research. Rev Neurosci. 2011;22(3):267–83.
    1. Nelson HE. A modified card sorting test sensitive to frontal lobe defects. Cortex. 1976;12(4):313–24. doi: 10.1016/S0010-9452(76)80035-4.
    1. Wechsler D. Wechsler Adult Intellegence Scale - Third Edition. San Antonio: Tx. The Psychological Corporation; 1997.
    1. Gondi V, Tome WA, Marsh J, Struck A, Ghia A, Turian JV, et al. Estimated risk of perihippocampal disease progression after hippocampal avoidance during whole-brain radiotherapy: safety profile for RTOG 0933. Radiother Oncol. 2010;95(3):327–31. doi: 10.1016/j.radonc.2010.02.030.
    1. Harth S, Abo-Madyan Y, Zheng L, Siebenlist K, Herskind C, Wenz F, et al. Estimation of intracranial failure risk following hippocampal-sparing whole brain radiotherapy. Radiother Oncol. 2013;109(1):152–8. doi: 10.1016/j.radonc.2013.09.009.
    1. Eichenbaum H. A cortical-hippocampal system for declarative memory. Nat Rev Neurosci. 2000;1(1):41–50. doi: 10.1038/35036213.
    1. Tang SG, Tseng CK, Tsay PK, Chen CH, Chang JW, Pai PC, et al. Predictors for patterns of brain relapse and overall survival in patients with non-small cell lung cancer. J Neurooncol. 2005;73(2):153–61. doi: 10.1007/s11060-004-3725-4.
    1. Barani IJ, Cuttino LW, Benedict SH, Todor D, Bump EA, Wu Y, et al. Neural stem cell-preserving external-beam radiotherapy of central nervous system malignancies. Int J Radiat Oncol Biol Phys. 2007;68(4):978–85. doi: 10.1016/j.ijrobp.2007.01.064.
    1. Roman DD, Sperduto PW. Neuropsychological effects of cranial radiation: current knowledge and future directions. Int J Radiat Oncol Biol Phys. 1995;31(4):983–98. doi: 10.1016/0360-3016(94)00550-8.
    1. Gutierrez AN, Westerly DC, Tome WA, Jaradat HA, Mackie TR, Bentzen SM, et al. Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int J Radiat Oncol Biol Phys. 2007;69(2):589–97. doi: 10.1016/j.ijrobp.2007.05.038.
    1. Barani IJ, Benedict SH, Lin PS. Neural stem cells: implications for the conventional radiotherapy of central nervous system malignancies. Int J Radiat Oncol Biol Phys. 2007;68(2):324–33. doi: 10.1016/j.ijrobp.2007.01.033.
    1. Barani IJ, Larson DA, Berger MS. Future directions in treatment of brain metastases. Surg Neurol Int. 2013;4(Suppl 4):S220–30.
    1. Bodensohn R, Soehn M, Ganswindt U, Schupp G, Nachbichler SB, Schnell O, et al. Hippocampal EUD in primarily irradiated glioblastoma patients. Radiat Oncol. 2014;9:276. doi: 10.1186/s13014-014-0276-5.
    1. Niemierko A. Reporting and analyzing dose distributions: A concept of equivalent uniform dose. Med Phys. 1997;24(1):103–10. doi: 10.1118/1.598063.

Source: PubMed

3
Prenumerera