Active lifestyles moderate clinical outcomes in autosomal dominant frontotemporal degeneration

K B Casaletto, A M Staffaroni, A Wolf, B Appleby, D Brushaber, G Coppola, B Dickerson, K Domoto-Reilly, F M Elahi, J Fields, J C Fong, L Forsberg, N Ghoshal, N Graff-Radford, M Grossman, H W Heuer, G-Y Hsiung, E D Huey, D Irwin, K Kantarci, D Kaufer, D Kerwin, D Knopman, J Kornak, J H Kramer, I Litvan, I R Mackenzie, M Mendez, B Miller, R Rademakers, E M Ramos, K Rascovsky, E D Roberson, J A Syrjanen, M C Tartaglia, S Weintraub, B Boeve, A L Boxer, H Rosen, K Yaffe, ARTFL/LEFFTDS Study, K B Casaletto, A M Staffaroni, A Wolf, B Appleby, D Brushaber, G Coppola, B Dickerson, K Domoto-Reilly, F M Elahi, J Fields, J C Fong, L Forsberg, N Ghoshal, N Graff-Radford, M Grossman, H W Heuer, G-Y Hsiung, E D Huey, D Irwin, K Kantarci, D Kaufer, D Kerwin, D Knopman, J Kornak, J H Kramer, I Litvan, I R Mackenzie, M Mendez, B Miller, R Rademakers, E M Ramos, K Rascovsky, E D Roberson, J A Syrjanen, M C Tartaglia, S Weintraub, B Boeve, A L Boxer, H Rosen, K Yaffe, ARTFL/LEFFTDS Study

Abstract

Introduction: Leisure activities impact brain aging and may be prevention targets. We characterized how physical and cognitive activities relate to brain health for the first time in autosomal dominant frontotemporal lobar degeneration (FTLD).

Methods: A total of 105 mutation carriers (C9orf72/MAPT/GRN) and 69 non-carriers reported current physical and cognitive activities at baseline, and completed longitudinal neurobehavioral assessments and brain magnetic resonance imaging (MRI) scans.

Results: Greater physical and cognitive activities were each associated with an estimated >55% slower clinical decline per year among dominant gene carriers. There was also an interaction between leisure activities and frontotemporal atrophy on cognition in mutation carriers. High-activity carriers with frontotemporal atrophy (-1 standard deviation/year) demonstrated >two-fold better cognitive performances per year compared to their less active peers with comparable atrophy rates.

Discussion: Active lifestyles were associated with less functional decline and moderated brain-to-behavior relationships longitudinally. More active carriers "outperformed" brain volume, commensurate with a cognitive reserve hypothesis. Lifestyle may confer clinical resilience, even in autosomal dominant FTLD.

Keywords: cognitive activity; cognitive reserve; exercise; frontotemporal dementia; physical activity.

© 2020 the Alzheimer's Association.

Figures

Figure 1.
Figure 1.
Baseline levels of physical and cognitive activity are lowest in syndromic autosomal dominant FTLD mutation carriers (adjusted for age, sex, education).
Figure 2.
Figure 2.
Baseline levels of physical and cognitive activities do not differ across FTLD genotype (adjusted for age, sex, education, and FTLD-CDR sum of boxes).
Figure 3.
Figure 3.
Higher levels of baseline physical and cognitive activities are associated with significantly slower clinical decline over time in autosomal dominant FTLD mutation carriers (adjusted for age, sex, education). Bands represent 95% CI.
Figure 4.
Figure 4.
Baseline models illustrating the moderating effect of physical activity on the relationship between frontotemporal volumes and clinical outcomes in FTLD mutation carriers (adjusted for age, sex, education, and FTLD-CDR sum of boxes).
Figure 5.
Figure 5.
Baseline models illustrating the moderating effect of cognitive activity on the relationship between frontotemporal volumes and clinical outcomes in FTLD mutation carriers (adjusted for age, sex, education, and FTLD-CDR sum of boxes).
Figure 6.
Figure 6.
Baseline physical and cognitive activities significantly moderate the relationship between frontotemporal atrophy and longitudinal clinical outcomes in autosomal dominant FTLD mutation carriers (adjusted for baseline age, sex, education, and FTLD-CDR sum of boxes). Bands represent 95% CI.

References

    1. Hörder H, Johansson L, Guo X, Grimby G, Kern S, Östling S, et al. Midlife cardiovascular fitness and dementia: A 44-year longitudinal population study in women. Neurology 2018:10.1212/WNL.0000000000005290. doi:10.1212/WNL.0000000000005290.
    1. Wilson RS, Boyle PA, Yu L, Barnes LL, Schneider JA, Bennett DA. Life-span cognitive activity, neuropathologic burden, and cognitive aging. Neurology 2013;81:314–21. doi:10.1212/WNL.0b013e31829c5e8a.
    1. Grande G, Vanacore N, Maggiore L, Cucumo V, Ghiretti R, Galimberti D, et al. Physical activity reduces the risk of dementia in mild cognitive impairment subjects: A cohort study. J Alzheimer’s Dis 2014. doi:10.3233/JAD-131808.
    1. Yaffe K, Barnes D, Nevitt M, Lui L-Y, Covinsky K. A Prospective Study of Physical Activity and Cognitive Decline in Elderly Women. Arch Intern Med 2001;161:1703. doi:10.1001/archinte.161.14.1703.
    1. Barnes DE, Yaffe K, Satariano WA, Tager IB. A Longitudinal Study of Cardiorespiratory Fitness and Cognitive Function in Healthy Older Adults. J Am Geriatr Soc 2003;51:459–65. doi:10.1046/j.1532-5415.2003.51153.x.
    1. Lautenschlager NT, Cox KL, Flicker L, Foster JK, Van Bockxmeer FM, Xiao J, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: A randomized trial. JAMA - J Am Med Assoc 2008. doi:10.1001/jama.300.9.1027.
    1. Aarsland D, Sardahaee FS, Anderssen S, Ballard C, Alzheimer’s Society Systematic Review group. Is physical activity a potential preventive factor for vascular dementia? A systematic review. Aging Ment Health 2010. doi:10.1080/13607860903586136.
    1. Podewils LJ, Guallar E, Kuller LH, Fried LP, Lopez OL, Carlson M, et al. Physical activity, APOE genotype, and dementia risk: Findings from the Cardiovascular Health Cognition Study. Am J Epidemiol 2005. doi:10.1093/aje/kwi092.
    1. Chen H, Zhang SM, Schwarzschild MA, Hernán MA, Ascherio A. Physical activity and the risk of Parkinson disease. Neurology 2005. doi:10.1212/01.WNL.0000151960.28687.93.
    1. Thacker EL, Chen H, Patel AV., McCullough ML, Calle EE, Thun MJ, et al. Recreational physical activity and risk of Parkinson’s disease. Mov Disord 2008. doi:10.1002/mds.21772.
    1. Bang J, Spina S, Miller BL. Non-Alzheimer’s dementia 1: Frontotemporal dementia. Lancet 2015. doi:10.1016/S0140-6736(15)00461-4.
    1. Müller S, Preische O, Sohrabi HR, Gräber S, Jucker M, Ringman JM, et al. Relationship between physical activity, cognition, and Alzheimer pathology in autosomal dominant Alzheimer’s disease. Alzheimer’s Dement 2018;0. doi:10.1016/j.jalz.2018.06.3059.
    1. Rasmussen Eid H, Rosness TA, Bosnes O, Salvesen Ø, Knutli M, Stordal E. Smoking and Obesity as Risk Factors in Frontotemporal Dementia and Alzheimer’s Disease: The HUNT Study. Dement Geriatr Cogn Dis Extra 2019;9:1–10. doi:10.1159/000495607.
    1. Golimstok A, Cámpora N, Rojas JI, Fernandez MC, Elizondo C, Soriano E, et al. Cardiovascular risk factors and frontotemporal dementia: a case-control study. Transl Neurodegener 2014;3:13. doi:10.1186/2047-9158-3-13.
    1. Massimo L, Zee J, Xie SX, Mcmillan CT, Rascovsky K, Irwin DJ, et al. Occupational attainment influences survival in autopsy-confirmed frontotemporal degeneration. 2015.
    1. Massimo L, Xie SX, Rennert Lior, Massimo DM, Halpin A, Placek K, et al. Occupational attainment influences longitudinal decline in behavioral variant frontotemporal degeneration. Brain Imaging Behav n.d;0:3. doi:10.1007/s11682-018-9852-x.
    1. Wang HX, MacDonald SWS, Dekhtyar S, Fratiglioni L. Association of lifelong exposure to cognitive reserve-enhancing factors with dementia risk: A community-based cohort study. PLoS Med 2017;14. doi:10.1371/journal.pmed.1002251.
    1. Pang TYC, Hannan AJ. Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology 2013. doi:10.1016/j.neuropharm.2012.06.029.
    1. Markham JA, Greenough WT. Experience-driven brain plasticity: Beyond the synapse. Neuron Glia Biol 2004;1:351–63. doi:10.1017/S1740925X05000219.
    1. He X, Liu D, Zhang Q, Liang F, Dai G, Zeng J, et al. Voluntary Exercise Promotes Glymphatic Clearance of Amyloid Beta and Reduces the Activation of Astrocytes and Microglia in Aged Mice. Front Mol Neurosci 2017;10:144. doi:10.3389/fnmol.2017.00144.
    1. Xu H, Gelyana E, Rajsombath M, Yang T, Li S, Selkoe D. Environmental Enrichment Potently Prevents Microglia-Mediated Neuroinflammation by Human Amyloid β-Protein Oligomers. J Neurosci 2016;36:9041–56. doi:10.1523/JNEUROSCI.1023-16.2016.
    1. Cracchiolo JR, Mori T, Nazian SJ, Tan J, Potter H, Arendash GW, et al. Enhanced cognitive activity – over and above social or physical activity – is required to protect Alzheimer’s mice against cognitive impairment, reduce Aβ deposition, and increase synaptic immunoreactivity. Neurobiol Learn Mem 2007;88:277–94.
    1. Krabbe G, Minami SS, Etchegaray JI, Taneja P, Djukic B, Davalos D, et al. Microglial NFκB-TNFα hyperactivation induces obsessive-compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia. Proc Natl Acad Sci U S A 2017;114:5029–34. doi:10.1073/pnas.1700477114.
    1. Broce I, Karch CM, Wen N, Fan CC, Wang Y, Hong Tan C, et al. Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies. PLoS Med 2018. doi:10.1371/journal.pmed.1002487.
    1. Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang HY, et al. Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation. Cell 2016. doi:10.1016/j.cell.2016.04.001.
    1. Boxer AL, Gold M, Huey E, Gao FB, Burton EA, Chow T, et al. Frontotemporal degeneration, the next therapeutic frontier: Molecules and animal models for frontotemporal degeneration drug development. Alzheimer’s Dement 2013. doi:10.1016/j.jalz.2012.03.002.
    1. Knopman DS, Kramer JH, Boeve BF, Caselli RJ, Graff-Radford NR, Mendez MF, et al. Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain 2008;131:2957–68. doi:10.1093/brain/awn234.
    1. Washburn RA, McAuley E, Katula J, Mihalko SL, Boileau RA. The Physical Activity Scale for the Elderly (PASE): Evidence for validity. J Clin Epidemiol 1999. doi:10.1016/S0895-4356(99)00049-9.
    1. Bolszak S, Casartelli NC, Impellizzeri FM, Maffiuletti NA. Validity and reproducibility of the Physical Activity Scale for the Elderly (PASE) questionnaire for the measurement of the physical activity level in patients after total knee arthroplasty. BMC Musculoskelet Disord 2014. doi:10.1186/1471-2474-15-46.
    1. Washburn RA, Smith KW, Jette AM, Janney CA. The physical activity scale for the elderly (PASE): Development and evaluation. J Clin Epidemiol 1993;46:153–62. doi:10.1016/0895-4356(93)90053-4.
    1. Hagiwara A, Ito N, Sawai K, Kazuma K. Validity and reliability of the Physical Activity Scale for the Elderly (PASE) in Japanese elderly people. Geriatr Gerontol Int 2008;8:143–51. doi:10.1111/j.1447-0594.2008.00463.x.
    1. Dinger MK, Oman F, Taylor EL, Vesely SK, Able J. Stability and convergent validity of the Physical Activity Scale for the Elderly (PASE). J Sports Med Phys Fitness 2004.
    1. Vemuri P, Lesnick TG, Przybelski SA, Machulda M, Knopman DS, Mielke MM, et al. Association of lifetime intellectual enrichment with cognitive decline in the older population. JAMA Neurol 2014. doi:10.1001/jamaneurol.2014.963.
    1. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, et al. Development and validation of a geriatric depression screening scale: A preliminary report. J Psychiatr Res 1982;17:37–49. doi:10.1016/0022-3956(82)90033-4.
    1. Staffaroni A, Bajorek L, Casaletto K, Cobigo Y, Goh S, Wolf A, et al. Assessment of Executive Function Declines in Presymptomatic AND Mildly Symptomatic Familial Frontotemporal Dementia: NIH-EXAMINER as a potential clinical trial endpoint. Alzheimer’s Dement n.d.
    1. Neuhaus JM, Kalbfleisch JD. Between- and within-cluster covariate effects in the analysis of clustered data. Biometrics 1998;54:638–45.
    1. Neuhaus JM, McCulloch CE. Separating between- and within-cluster covariate effects by using conditional and partitioning methods. J R Stat Soc Ser B (Statistical Methodol 2006;68:859–72. doi:10.1111/j.1467-9868.2006.00570.x.
    1. Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D, Belleville S, Cantilon M, Chetelat G, et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer’s Dement 2018. doi:10.1016/j.jmarsys.2011.03.015.
    1. Stern Y Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 2012. doi:10.1016/S1474-4422(12)70191-6.
    1. Morgan EE, Woods SP, Smith C, Weber E, Scott JC, Grant I, et al. Lower Cognitive Reserve Among Individuals with Syndromic HIV-Associated Neurocognitive Disorders (HAND). AIDS Behav 2012;16:2279–85. doi:10.1007/s10461-012-0229-7.
    1. Stern Y Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 2012;11:1006–12. doi:10.1016/S1474-4422(12)70191-6.
    1. Hindle JV, Hurt CS, Burn DJ, Brown RG, Samuel M, Wilson KC, et al. The effects of cognitive reserve and lifestyle on cognition and dementia in Parkinson’s disease-a longitudinal cohort study. Int J Geriatr Psychiatry 2016;31:13–23. doi:10.1002/gps.4284.
    1. Modica CM, Bergsland N, Dwyer MG, Ramasamy DP, Carl E, Zivadinov R, et al. Cognitive reserve moderates the impact of subcortical gray matter atrophy on neuropsychological status in multiple sclerosis. Mult Scler J 2016;22:36–42. doi:10.1177/1352458515579443.
    1. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurol 2014. doi:10.1016/S1474-4422(14)70136-X.
    1. Hoang TD, Reis J, Zhu N, Jacobs DR, Launer LJ, Whitmer RA, et al. Effect of Early Adult Patterns of Physical Activity and Television Viewing on Midlife Cognitive Function n.d. doi:10.1001/jamapsychiatry.2015.2468.
    1. Mewborn CM, Lindbergh CA, Stephen Miller L. Cognitive Interventions for Cognitively Healthy, Mildly Impaired, and Mixed Samples of Older Adults: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials. Neuropsychol Rev 2017;27:403–39. doi:10.1007/s11065-017-9350-8.
    1. Rebok GW, Ball K, Guey LT, Jones RN, Kim H-Y, King JW, et al. Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J Am Geriatr Soc 2014;62:16–24. doi:10.1111/jgs.12607.
    1. Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med 2017:bjsports-2016–096587. doi:10.1136/bjsports-2016-096587.
    1. Middleton LE, Manini TM, Simonsick EM, Harris TB, Barnes DE, Tylavsky F, et al. Activity Energy Expenditure and Incident Cognitive Impairment in Older Adults. Arch Intern Med 2011;171:1251. doi:10.1001/archinternmed.2011.277.
    1. Aguirre-Acevedo DC, Lopera F, Henao E, Tirado V, Muñoz C, Giraldo M, et al. Cognitive Decline in a Colombian Kindred With Autosomal Dominant Alzheimer Disease: A Retrospective Cohort Study. JAMA Neurol 2016;73:431–8. doi:10.1001/jamaneurol.2015.4851.
    1. Ambrogini P, Cuppini R, Lattanzi D, Ciuffoli S, Frontini A, Fanelli M. Synaptogenesis in adult-generated hippocampal granule cells is affected by behavioral experiences. Hippocampus 2010;20:799–810. doi:10.1002/hipo.20679.
    1. Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci U S A 1990;87:5568–72. doi:10.1073/pnas.87.14.5568.
    1. Cracchiolo JR, Mori T, Nazian SJ, Tan J, Potter H, Arendash GW. Enhanced cognitive activity-over and above social or physical activity-is required to protect Alzheimer’s mice against cognitive impairment, reduce Aβ deposition, and increase synaptic immunoreactivity. Neurobiol Learn Mem 2007;88:277–94. doi:10.1016/j.nlm.2007.07.007.
    1. Rosenman R, Tennekoon V, Hill LG. Measuring bias in self-reported data. Int J Behav Healthc Res 2011;2:320–32. doi:10.1504/IJBHR.2011.043414.

Source: PubMed

3
Prenumerera