Recent updates on progressive familial intrahepatic cholestasis types 1, 2 and 3: Outcome and therapeutic strategies

Seema Alam, Bikrant Bihari Lal, Seema Alam, Bikrant Bihari Lal

Abstract

Recent evidence points towards the role of genotype to understand the phenotype, predict the natural course and long term outcome of patients with progressive familial intrahepatic cholestasis (PFIC). Expanded role of the heterozygous transporter defects presenting late needs to be suspected and identified. Treatment of pruritus, nutritional rehabilitation, prevention of fibrosis progression and liver transplantation (LT) in those with end stage liver disease form the crux of the treatment. LT in PFIC has its own unique issues like high rates of intractable diarrhoea, growth failure; steatohepatitis and graft failure in PFIC1 and antibody-mediated bile salt export pump deficiency in PFIC2. Drugs inhibiting apical sodium-dependent bile transporter and adenovirus-associated vector mediated gene therapy hold promise for future.

Keywords: Biliary diversion; Gene therapy; Genotype; Liver transplantation.

Conflict of interest statement

Conflict-of-interest statement: Seema Alam and Bikrant Bihari Lal declare no conflict of interest.

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Figures

Figure 1
Figure 1
Bile acid secretion and transport from the hepatocyte across the canalicular membrane and enterohepatic circulation: Role of various transporters involved in transport of bile salts and phospholipids across the canalicular membrane. Enterohepatic circulation of bile salts and their regulation via farnesoid X receptor - fibroblast growth factor 15/19 is also depicted. ABCB: ATP-binding cassette subfamily B; FXR: Farnesoid X receptor; FGF: Fibroblast growth factor; FIC1: Familial intrahepatic cholestasis 1; BSEP: Bile salt exporter pump; MDR3: Multidrug-resistant type 3; BA: Bile acids; NTCP: Sodium taurocholate cotransporting polypeptide; OATs: Organic anion transporters.
Figure 2
Figure 2
Immunohistochemistry of progressive familial intrahepatic cholestasis type 2 and 3. A: Normal liver showing canalicular bile salt exporter pump (BSEP) immunostaining; B: Faint BSEP immunostaining in a case of progressive familial intrahepatic cholestasis (PFIC2); C: Normal Liver showing canalicular multidrug resistant protein-3 (MDR3) immunostaining; D: Faint or absent MDR3 immunostaining in a case of PFIC3.
Figure 3
Figure 3
Algorithm for management of pruritus in children with progressive familial intrahepatic cholestasis. PFIC: Progressive familial intrahepatic cholestasis; MCT: Medium chain triglyceride; ESLD: End stage liver disease; PEBD: Partial external biliary diversion; PIBD: Partial internal biliary diversion; IE: Ileal exclusion.
Figure 4
Figure 4
Schematic representation of biliary diversion surgeries. A: Partial external biliary diversion: A conduit of around 15-20 cm is made from gall bladder to an exteriorized cutaneous stoma using a jejunal conduit. This conduit diverts a variable (-50%) proportion of bile away from the intestine into the connected stoma bag which needs to be emptied regularly; B: Ileal exclusion (IE): IE involves formation of an end to side ileocolonic anstomosis in such a way that the terminal 15% of ileum is excluded, hence drastically reducing the enterohepatic circulation. The proximal end of the resected ileum is sutured to the colon around 5 cm distal to the ileocecal valve; C: Partial internal biliary diversion (PIBD): The most common technique of PIBD is a cholecysto-jejuno-colonic anastomosis. An isolated jejunal conduit of around 12-15 cm length is created and anastomosed proximally to the gallbladder and distally to the mid part of the ascending colon; D: Another commonly used technique of PIBD is cholecysto-colostomy where gall bladder is directly connected to the transverse colon to partially bypass the terminal ileum.
Figure 5
Figure 5
Therapeutic targets of some of the newer drugs for treatment of progressive familial intrahepatic cholestasis. A: Apical sodium-dependent bile salt transporter inhibitors prevent the absorption of bile acids in the terminal ileum resulting in significant decrease in enterohepatic circulation of bile acids, ultimately resulting in decreased serum bile acids; B:Farnesoid X receptor agonist acts by increasing bile salt exporter pump expression as well as by inhibiting CYP7A1, the rate limiting step in synthesis of bile acids in hepatocytes; C: Fibroblast growth factor 19 analogue act via fibroblast growth factor receptor-4 and inhibit CYP7A1; D:Nor-ursodeoxycholic acid increases the bile-acid dependent bile flow by increasing the cholehepatic shunt. ASBT: Apical sodium-dependent bile salt transporter; BA: Bile acid; BSEP: Bile salt exporter pump; Chol: Cholesterol; CYP7A1: Cholesterol 7-α hydroxylase; FGFR4: Fibroblast growth factor receptor-4; FXR: Farnesoid X receptor; FGF19: Fibroblast growth factor 19; nor-UDCA: Nor-ursodeoxycholic acid; OCA: Obeticholic acid; SHP: Small heterodimer partner-1.

References

    1. Jacquemin E. Progressive familial intrahepatic cholestasis. Clin Res Hepatol Gastroenterol. 2012;36 Suppl 1:S26–S35.
    1. Baker A, Kerkar N, Todorova L, Kamath BM, Houwen RHJ. Systematic review of progressive familial intrahepatic cholestasis. Clin Res Hepatol Gastroenterol. 2019;43:20–36.
    1. Takatsu H, Tanaka G, Segawa K, Suzuki J, Nagata S, Nakayama K, Shin HW. Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane. J Biol Chem. 2014;289:33543–33556.
    1. Groen A, Romero MR, Kunne C, Hoosdally SJ, Dixon PH, Wooding C, Williamson C, Seppen J, Van den Oever K, Mok KS, Paulusma CC, Linton KJ, Oude Elferink RP. Complementary functions of the flippase ATP8B1 and the floppase ABCB4 in maintaining canalicular membrane integrity. Gastroenterology. 2011;141:1927–37.e1.
    1. Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V, Tanner MS, Kagalwalla AF, Németh A, Pawlowska J, Baker A, Mieli-Vergani G, Freimer NB, Gardiner RM, Thompson RJ. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet. 1998;20:233–238.
    1. Folmer DE, Elferink RP, Paulusma CC. P4 ATPases - lipid flippases and their role in disease. BiochimBiophys Acta. 2009;1791:628–635.
    1. Chen F, Ellis E, Strom SC, Shneider BL. ATPase Class I Type 8B Member 1 and protein kinase C zeta induce the expression of the canalicular bile salt export pump in human hepatocytes. Pediatr Res. 2010;67:183–187.
    1. Vitale G, Gitto S, Vukotic R, Raimondi F, Andreone P. Familial intrahepatic cholestasis: New and wide perspectives. Dig Liver Dis. 2019;51:922–933.
    1. Stapelbroek JM, Peters TA, van Beurden DH, Curfs JH, Joosten A, Beynon AJ, van Leeuwen BM, van der Velden LM, Bull L, Oude Elferink RP, van Zanten BA, Klomp LW, Houwen RH. ATP8B1 is essential for maintaining normal hearing. Proc Natl Acad Sci U S A. 2009;106:9709–9714.
    1. Ray NB, Durairaj L, Chen BB, McVerry BJ, Ryan AJ, Donahoe M, Waltenbaugh AK, O'Donnell CP, Henderson FC, Etscheidt CA, McCoy DM, Agassandian M, Hayes-Rowan EC, Coon TA, Butler PL, Gakhar L, Mathur SN, Sieren JC, Tyurina YY, Kagan VE, McLennan G, Mallampalli RK. Dynamic regulation of cardiolipin by the lipid pump Atp8b1 determines the severity of lung injury in experimental pneumonia. Nat Med. 2010;16:1120–1127.
    1. Bull LN, Morotti R, Squires JE. ATP8B1 Deficiency. 2001 Oct 15. In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2021.
    1. Al-Hussaini A, Lone K, Bashir MS, Alrashidi S, Fagih M, Alanazi A, AlYaseen S, Almayouf A, Alruwaithi M, Asery A. ATP8B1, ABCB11, and ABCB4 Genes Defects: Novel Mutations Associated with Cholestasis with Different Phenotypes and Outcomes. J Pediatr. 2021;236:113–123.e2.
    1. van der Woerd WL, van Haaften-Visser DY, van de Graaf SF, Férec C, Masson E, Stapelbroek JM, Bugert P, Witt H, Houwen RH. Mutational analysis of ATP8B1 in patients with chronic pancreatitis. PLoS One. 2013;8:e80553.
    1. Li L, Deheragoda M, Lu Y, Gong J, Wang J. Hypothyroidism Associated with ATP8B1 Deficiency. J Pediatr. 2015;167:1334–9.e1.
    1. van Wessel DBE, Thompson RJ, Gonzales E, Jankowska I, Shneider BL, Sokal E, Grammatikopoulos T, Kadaristiana A, Jacquemin E, Spraul A, Lipiński P, Czubkowski P, Rock N, Shagrani M, Broering D, Algoufi T, Mazhar N, Nicastro E, Kelly D, Nebbia G, Arnell H, Fischler B, Hulscher JBF, Serranti D, Arikan C, Debray D, Lacaille F, Goncalves C, Hierro L, Muñoz Bartolo G, Mozer-Glassberg Y, Azaz A, Brecelj J, Dezsőfi A, Luigi Calvo P, Krebs-Schmitt D, Hartleif S, van der Woerd WL, Wang JS, Li LT, Durmaz Ö, Kerkar N, HørbyJørgensen M, Fischer R, Jimenez-Rivera C, Alam S, Cananzi M, Laverdure N, Targa Ferreira C, Ordonez F, Wang H, Sency V, Mo Kim K, Chen HL, Carvalho E, Fabre A, Quintero Bernabeu J, Alonso EM, Sokol RJ, Suchy FJ, Loomes KM, McKiernan PJ, Rosenthal P, Turmelle Y, Rao GS, Horslen S, Kamath BM, Rogalidou M, Karnsakul WW, Hansen B, Verkade HJ Natural Course and Prognosis of PFIC and Effect of Biliary Diversion Consortium. Impact of Genotype, Serum Bile Acids, and Surgical Biliary Diversion on Native Liver Survival in FIC1 Deficiency. Hepatology. 2021;74:892–906.
    1. Dröge C, Bonus M, Baumann U, Klindt C, Lainka E, Kathemann S, Brinkert F, Grabhorn E, Pfister ED, Wenning D, Fichtner A, Gotthardt DN, Weiss KH, McKiernan P, Puri RD, Verma IC, Kluge S, Gohlke H, Schmitt L, Kubitz R, Häussinger D, Keitel V. Sequencing of FIC1, BSEP and MDR3 in a large cohort of patients with cholestasis revealed a high number of different genetic variants. J Hepatol. 2017;67:1253–1264.
    1. Painter JN, Savander M, Ropponen A, Nupponen N, Riikonen S, Ylikorkala O, Lehesjoki AE, Aittomäki K. Sequence variation in the ATP8B1 gene and intrahepatic cholestasis of pregnancy. Eur J Hum Genet. 2005;13:435–439.
    1. Henkel SA, Squires JH, Ayers M, Ganoza A, Mckiernan P, Squires JE. Expanding etiology of progressive familial intrahepatic cholestasis. World J Hepatol. 2019;11:450–463.
    1. Zhang Y, Li F, Patterson AD, Wang Y, Krausz KW, Neale G, Thomas S, Nachagari D, Vogel P, Vore M, Gonzalez FJ, Schuetz JD. Abcb11 deficiency induces cholestasis coupled to impaired β-fatty acid oxidation in mice. J Biol Chem. 2012;287:24784–24794.
    1. van Wessel DBE, Thompson RJ, Gonzales E, Jankowska I, Sokal E, Grammatikopoulos T, Kadaristiana A, Jacquemin E, Spraul A, Lipiński P, Czubkowski P, Rock N, Shagrani M, Broering D, Algoufi T, Mazhar N, Nicastro E, Kelly DA, Nebbia G, Arnell H, Björn Fischler, Hulscher JBF, Serranti D, Arikan C, Polat E, Debray D, Lacaille F, Goncalves C, Hierro L, Muñoz Bartolo G, Mozer-Glassberg Y, Azaz A, Brecelj J, Dezsőfi A, Calvo PL, Grabhorn E, Sturm E, van der Woerd WJ, Kamath BM, Wang JS, Li L, Durmaz Ö, Onal Z, Bunt TMG, Hansen BE, Verkade HJ NAtural course and Prognosis of PFIC and Effect of biliary Diversion (NAPPED) consortium. Genotype correlates with the natural history of severe bile salt export pump deficiency. J Hepatol. 2020;73:84–93.
    1. Li LT, Li ZD, Yang Y, Lu Y, Xie XB, Chen L, Feng JY, Knisely AS, Wang JS. ABCB11 deficiency presenting as transient neonatal cholestasis: Correlation with genotypes and BSEP expression. Liver Int. 2020;40:2788–2796.
    1. Strautnieks SS, Byrne JA, Pawlikowska L, Cebecauerová D, Rayner A, Dutton L, Meier Y, Antoniou A, Stieger B, Arnell H, Ozçay F, Al-Hussaini HF, Bassas AF, Verkade HJ, Fischler B, Németh A, Kotalová R, Shneider BL, Cielecka-Kuszyk J, McClean P, Whitington PF, Sokal E, Jirsa M, Wali SH, Jankowska I, Pawłowska J, Mieli-Vergani G, Knisely AS, Bull LN, Thompson RJ. Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology. 2008;134:1203–1214.
    1. Sticova E, Jirsa M. ABCB4 disease: Many faces of one gene deficiency. Ann Hepatol. 2020;19:126–133.
    1. Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E. Progressive familial intrahepatic cholestasis. Orphanet J Rare Dis. 2009;4:1.
    1. Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E. The spectrum of liver diseases related to ABCB4 gene mutations: pathophysiology and clinical aspects. Semin Liver Dis. 2010;30:134–146.
    1. Degiorgio D, Colombo C, Seia M, Porcaro L, Costantino L, Zazzeron L, Bordo D, Coviello DA. Molecular characterization and structural implications of 25 new ABCB4 mutations in progressive familial intrahepatic cholestasis type 3 (PFIC3) Eur J Hum Genet. 2007;15:1230–1238.
    1. Delaunay JL, Durand-Schneider AM, Dossier C, Falguières T, Gautherot J, Davit-Spraul A, Aït-Slimane T, Housset C, Jacquemin E, Maurice M. A functional classification of ABCB4 variations causing progressive familial intrahepatic cholestasis type 3. Hepatology. 2016;63:1620–1631.
    1. Jacquemin E. Role of multidrug resistance 3 deficiency in pediatric and adult liver disease: one gene for three diseases. Semin Liver Dis. 2001;21:551–562.
    1. Folvik G, Hilde O, Helge GO. Benign recurrent intrahepatic cholestasis: review and long-term follow-up of five cases. Scand J Gastroenterol. 2012;47:482–488.
    1. Dixon PH, Sambrotta M, Chambers J, Taylor-Harris P, Syngelaki A, Nicolaides K, Knisely AS, Thompson RJ, Williamson C. An expanded role for heterozygous mutations of ABCB4, ABCB11, ATP8B1, ABCC2 and TJP2 in intrahepatic cholestasis of pregnancy. Sci Rep. 2017;7:11823.
    1. Aamann L, Ørntoft N, Vogel I, Grønbaek H, Becher N, Vilstrup H, Ott P, Lildballe DL. Unexplained cholestasis in adults and adolescents: diagnostic benefit of genetic examination. Scand J Gastroenterol. 2018;53:305–311.
    1. Bull LN, Thompson RJ. Progressive Familial Intrahepatic Cholestasis. Clin Liver Dis. 2018;22:657–669.
    1. Vij M, Valamparampil J, Shanmugum N, Reddy SM, Rajindrajith S, Rela M. Paucity of Interlobular Bile Ducts in Multidrug-Resistant P-Glycoprotein 3 (MDR3) Deficiency. Int J Surg Pathol. 2019;27:343–347.
    1. Lang C, Meier Y, Stieger B, Beuers U, Lang T, Kerb R, Kullak-Ublick GA, Meier PJ, Pauli-Magnus C. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics. 2007;17:47–60.
    1. Nayagam JS, Williamson C, Joshi D, Thompson RJ. Review article: liver disease in adults with variants in the cholestasis-related genes ABCB11, ABCB4 and ATP8B1. Aliment PharmacolTher. 2020;52:1628–1639.
    1. Yang XF, Liu GS, Li MX. Analysis of mutations of MDR3 exons 9 and 23 in infants with parenteral nutrition-associated cholestasis. Exp Ther Med. 2015;10:2361–2365.
    1. Hori T, Egawa H, Takada Y, Ueda M, Oike F, Ogura Y, Sakamoto S, Kasahara M, Ogawa K, Miyagawa-Hayashino A, Yonekawa Y, Yorifuji T, Watanabe K, Doi H, Nguyen JH, Chen F, Baine AM, Gardner LB, Uemoto S. Progressive familial intrahepatic cholestasis: a single-center experience of living-donor liver transplantation during two decades in Japan. Clin Transplant. 2011;25:776–785.
    1. Agarwal S, Lal BB, Rawat D, Rastogi A, Bharathy KG, Alam S. Progressive Familial Intrahepatic Cholestasis (PFIC) in Indian Children: Clinical Spectrum and Outcome. J Clin Exp Hepatol. 2016;6:203–208.
    1. Petrescu AD, Kain J, Liere V, Heavener T, DeMorrow S. Hypothalamus-Pituitary-Adrenal Dysfunction in Cholestatic Liver Disease. Front Endocrinol (Lausanne) 2018;9:660.
    1. Feranchak AP, Suchy FJ, SokolRJ . Medicaland Nutritional management of cholestasis in infants and children. 4th edition. Suchy FJ, Sokol RJ,Balistreri WF, editors. Liver Disease in Children. New York: Cambridge University Press, 2014: 111-139.
    1. Lal BB, Alam S, Khanna R, Rawat D. Weekly regimen of vitamin D supplementation is more efficacious than stoss regimen for treatment of vitamin D deficiency in children with chronic liver diseases. Eur J Pediatr. 2018;177:827–834.
    1. Elman S, Hynan LS, Gabriel V, Mayo MJ. The 5-D itch scale: a new measure of pruritus. Br J Dermatol. 2010;162:587–593.
    1. Frider B, Castillo A, Gordo-Gilart R, Bruno A, Amante M, Alvarez L, Mathet V. Reversal of advanced fibrosis after long-term ursodeoxycholic acid therapy in a patient with residual expression of MDR3. Ann Hepatol. 2015;14:745–751.
    1. Tandon P, Rowe BH, Vandermeer B, Bain VG. The efficacy and safety of bile Acid binding agents, opioid antagonists, or rifampin in the treatment of cholestasis-associated pruritus. Am J Gastroenterol. 2007;102:1528–1536.
    1. Imam MH, Gossard AA, Sinakos E, Lindor KD. Pathogenesis and management of pruritus in cholestatic liver disease. J Gastroenterol Hepatol. 2012;27:1150–1158.
    1. Appleby VJ, Hutchinson JM, Davies MH. Safety and efficacy of long-term nasobiliary drainage to treat intractable pruritus in cholestatic liver disease. Frontline Gastroenterol. 2015;6:252–254.
    1. Cielecka-Kuszyk J, Lipiński P, Szymańska S, Ismail H, Jankowska I. Long-term follow-up in children with progressive familial intrahepatic cholestasis type 2 after partial external biliary diversion with focus on histopathological features. Pol J Pathol. 2019;70:79–83.
    1. Bull LN, Pawlikowska L, Strautnieks S, Jankowska I, Czubkowski P, Dodge JL, Emerick K, Wanty C, Wali S, Blanchard S, Lacaille F, Byrne JA, van Eerde AM, Kolho KL, Houwen R, Lobritto S, Hupertz V, McClean P, Mieli-Vergani G, Sokal E, Rosenthal P, Whitington PF, Pawlowska J, Thompson RJ. Outcomes of surgical management of familial intrahepatic cholestasis 1 and bile salt export protein deficiencies. Hepatol Commun. 2018;2:515–528.
    1. Bjørnland K, Hukkinen M, Gatzinsky V, Arnell H, Pakarinen MP, Almaas R, Svensson JF. Partial Biliary Diversion May Promote Long-Term Relief of Pruritus and Native Liver Survival in Children with Cholestatic Liver Diseases. Eur J Pediatr Surg. 2021;31:341–346.
    1. Wang KS, Tiao G, Bass LM, Hertel PM, Mogul D, Kerkar N, Clifton M, Azen C, Bull L, Rosenthal P, Stewart D, Superina R, Arnon R, Bozic M, Brandt ML, Dillon PA, Fecteau A, Iyer K, Kamath B, Karpen S, Karrer F, Loomes KM, Mack C, Mattei P, Miethke A, Soltys K, Turmelle YP, West K, Zagory J, Goodhue C, Shneider BL Childhood Liver Disease Research Network (ChiLDReN) Analysis of surgical interruption of the enterohepatic circulation as a treatment for pediatric cholestasis. Hepatology. 2017;65:1645–1654.
    1. Van Vaisberg V, Tannuri ACA, Lima FR, Tannuri U. Ileal exclusion for pruritus treatment in children with progressive familial intrahepatic cholestasis and other cholestatic diseases. J Pediatr Surg. 2020;55:1385–1391.
    1. Chen L, Xiao H, Ren XH, Li L. Long-term outcomes after cholecystocolostomy for progressive familial intrahepatic cholestasis. Hepatol Res. 2018;48:1163–1171.
    1. Foroutan HR, Bahador A, Ghanim SM, Dehghani SM, Anbardar MH, Fattahi MR, Forooghi M, Azh O, Tadayon A, Sherafat A, Yaghoobi AA, Ashraf MA. Effects of partial internal biliary diversion on long-term outcomes in patients with progressive familial intrahepatic cholestasis: experience in 44 patients. Pediatr Surg Int. 2020;36:603–610.
    1. Yang H, Porte RJ, Verkade HJ, De Langen ZJ, Hulscher JB. Partial external biliary diversion in children with progressive familial intrahepatic cholestasis and Alagille disease. J Pediatr Gastroenterol Nutr. 2009;49:216–221.
    1. Schukfeh N, Metzelder ML, Petersen C, Reismann M, Pfister ED, Ure BM, Kuebler JF. Normalization of serum bile acids after partial external biliary diversion indicates an excellent long-term outcome in children with progressive familial intrahepatic cholestasis. J Pediatr Surg. 2012;47:501–505.
    1. Alrabadi LS, Morotti RA, Valentino PL, Rodriguez-Davalos MI, Ekong UD, Emre SH. Biliary drainage as treatment for allograft steatosis following liver transplantation for PFIC-1 disease: A single-center experience. Pediatr Transplant. 2018;22:e13184.
    1. Verkade HJ, Thompson RJ, Arnell H, Fischler B, Gillberg PG, Mattsson JP, Torfgård K, Lindström E. Systematic Review and Meta-analysis: Partial External Biliary Diversion in Progressive Familial Intrahepatic Cholestasis. J Pediatr Gastroenterol Nutr. 2020;71:176–183.
    1. Mehl A, Bohorquez H, Serrano MS, Galliano G, Reichman TW. Liver transplantation and the management of progressive familial intrahepatic cholestasis in children. World J Transplant. 2016;6:278–290.
    1. Nikeghbalian S, Malekhosseini SA, Kazemi K, Arasteh P, Eghlimi H, Shamsaeefar A, Nikoupour H, Gholami S, Dehghani M, Dehghani SM, Bahador A, Salahi H. The Largest Single Center Report on Pediatric Liver Transplantation: Experiences and Lessons Learned. Ann Surg. 2021;273:e70–e72.
    1. Okamoto T, Sonoda M, Ogawa E, Ito S, Togawa T, Hayashi H, Okajima H, Uemoto S. Long-term Outcomes of Living-donor Liver Transplantation for Progressive Familial Intrahepatic Cholestasis Type 1. J Pediatr Gastroenterol Nutr. 2021;72:425–429.
    1. van der Mark VA, de Waart DR, Ho-Mok KS, Tabbers MM, Voogt HW, Oude Elferink RP, Knisely AS, Paulusma CC. The lipid flippase heterodimer ATP8B1-CDC50A is essential for surface expression of the apical sodium-dependent bile acid transporter (SLC10A2/ASBT) in intestinal Caco-2 cells. BiochimBiophys Acta. 2014;1842:2378–2386.
    1. Mali VP, Fukuda A, Shigeta T, Uchida H, Hirata Y, Rahayatri TH, Kanazawa H, Sasaki K, de Ville de Goyet J, Kasahara M. Total internal biliary diversion during liver transplantation for type 1 progressive familial intrahepatic cholestasis: a novel approach. Pediatr Transplant. 2016;20:981–986.
    1. Stindt J, Kluge S, Dröge C, Keitel V, Stross C, Baumann U, Brinkert F, Dhawan A, Engelmann G, Ganschow R, Gerner P, Grabhorn E, Knisely AS, Noli KA, Pukite I, Shepherd RW, Ueno T, Schmitt L, Wiek C, Hanenberg H, Häussinger D, Kubitz R. Bile salt export pump-reactive antibodies form a polyclonal, multi-inhibitory response in antibody-induced bile salt export pump deficiency. Hepatology. 2016;63:524–537.
    1. Quintero J, Juamperez J, Gonzales E, Julio E, Mercadal-Hally M, Collado-Hilly M, Marín-Sánchez A, Charco R. Successful Treatment with Rituximab and Immunoadsorption for an Auto-Antibody Induced Bile Salt Export Pump Deficiency in a Liver Transplanted Patient. Pediatr Gastroenterol Hepatol Nutr. 2020;23:174–179.
    1. Brinkert F, Pukite I, Krebs-Schmitt D, Briem-Richter A, Stindt J, Häussinger D, Keitel V, Müller I, Grabhorn E. Allogeneic haematopoietic stem cell transplantation eliminates alloreactive inhibitory antibodies after liver transplantation for bile salt export pump deficiency. J Hepatol. 2018;69:961–965.
    1. Bassas A, Chehab M, Hebby H, Al Shahed M, Al Husseini H, Al Zahrani A, Wali S. Living related liver transplantation in 13 cases of progressive familial intrahepatic cholestasis. Transplant Proc. 2003;35:3003–3005.
    1. Aydogdu S, Cakir M, Arikan C, Tumgor G, Yuksekkaya HA, Yilmaz F, Kilic M. Liver transplantation for progressive familial intrahepatic cholestasis: clinical and histopathological findings, outcome and impact on growth. Pediatr Transplant. 2007;11:634–640.
    1. Bosma PJ, Wits M, Oude-Elferink RP. Gene Therapy for Progressive Familial Intrahepatic Cholestasis: Current Progress and Future Prospects. Int J Mol Sci. 2020;22
    1. High-dose AAV gene therapy deaths. Nat Biotechnol. 2020;38:910.
    1. De Vree JM, Ottenhoff R, Bosma PJ, Smith AJ, Aten J, Oude Elferink RP. Correction of liver disease by hepatocyte transplantation in a mouse model of progressive familial intrahepatic cholestasis. Gastroenterology. 2000;119:1720–1730.
    1. Weber ND, Odriozola L, Martínez-García J, Ferrer V, Douar A, Bénichou B, González-Aseguinolaza G, Smerdou C. Gene therapy for progressive familial intrahepatic cholestasis type 3 in a clinically relevant mouse model. Nat Commun. 2019;10:5694.
    1. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A, Morecki S, Andolfi G, Tabucchi A, Carlucci F, Marinello E, Cattaneo F, Vai S, Servida P, Miniero R, Roncarolo MG, Bordignon C. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science. 2002;296:2410–2413.
    1. Alagoz M, Kherad N. Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review) Int J Mol Med. 2020;46:521–534.
    1. Kamath BM, Stein P, Houwen RHJ, Verkade HJ. Potential of ileal bile acid transporter inhibition as a therapeutic target in Alagille syndrome and progressive familial intrahepatic cholestasis. Liver Int. 2020;40:1812–1822.
    1. Slavetinsky C, Sturm E. Odevixibat and partial external biliary diversion showed equal improvement of cholestasis in a patient with progressive familial intrahepatic cholestasis. BMJ Case Rep. 2020;13
    1. Mareux E, Lapalus M, Amzal R, Almes M, Aït-Slimane T, Delaunay JL, Adnot P, Collado-Hilly M, Davit-Spraul A, Falguières T, Callebaut I, Gonzales E, Jacquemin E. Functional rescue of an ABCB11 mutant by ivacaftor: A new targeted pharmacotherapy approach in bile salt export pump deficiency. Liver Int. 2020;40:1917–1925.
    1. Hayashi H, Sugiyama Y. Short-chain ubiquitination is associated with the degradation rate of a cell-surface-resident bile salt export pump (BSEP/ABCB11) Mol Pharmacol. 2009;75:143–150.
    1. Hayashi H, Naoi S, Hirose Y, Matsuzaka Y, Tanikawa K, Igarashi K, Nagasaka H, Kage M, Inui A, Kusuhara H. Successful treatment with 4-phenylbutyrate in a patient with benign recurrent intrahepatic cholestasis type 2 refractory to biliary drainage and bilirubin absorption. Hepatol Res. 2016;46:192–200.
    1. Malatack JJ, Doyle D. A Drug Regimen for Progressive Familial Cholestasis Type 2. Pediatrics. 2018;141
    1. Vitale G, Simonetti G, Pirillo M, Taruschio G, Andreone P. Bipolar and Related Disorders Induced by Sodium 4-Phenylbutyrate in a Male Adolescent with Bile Salt Export Pump Deficiency Disease. Psychiatry Investig. 2016;13:580–582.
    1. Sohail MI, Dönmez-Cakil Y, Szöllősi D, Stockner T, Chiba P. The Bile Salt Export Pump: Molecular Structure, Study Models and Small-Molecule Drugs for the Treatment of Inherited BSEP Deficiencies. Int J Mol Sci. 2021;22
    1. Halilbasic E, Steinacher D, Trauner M. Nor-Ursodeoxycholic Acid as a Novel Therapeutic Approach for Cholestatic and Metabolic Liver Diseases. Dig Dis. 2017;35:288–292.
    1. Corpechot C, Chazouillères O, Rousseau A, Le Gruyer A, Habersetzer F, Mathurin P, Goria O, Potier P, Minello A, Silvain C, Abergel A, Debette-Gratien M, Larrey D, Roux O, Bronowicki JP, Boursier J, de Ledinghen V, Heurgue-Berlot A, Nguyen-Khac E, Zoulim F, Ollivier-Hourmand I, Zarski JP, Nkontchou G, Lemoinne S, Humbert L, Rainteau D, Lefèvre G, de Chaisemartin L, Chollet-Martin S, Gaouar F, Admane FH, Simon T, Poupon R. A Placebo-Controlled Trial of Bezafibrate in Primary Biliary Cholangitis. N Engl J Med. 2018;378:2171–2181.
    1. Trauner M, Nevens F, Shiffman ML, Drenth JPH, Bowlus CL, Vargas V, Andreone P, Hirschfield GM, Pencek R, Malecha ES, MacConell L, Shapiro D. Long-term efficacy and safety of obeticholic acid for patients with primary biliary cholangitis: 3-year results of an international open-label extension study. Lancet Gastroenterol Hepatol. 2019;4:445–453.

Source: PubMed

3
Prenumerera