Effect of multilevel lower-limb botulinum injections & intensive physical therapy on children with cerebral palsy

Monica Juneja, Rahul Jain, Ankita Gautam, Ritu Khanna, Kamia Narang, Monica Juneja, Rahul Jain, Ankita Gautam, Ritu Khanna, Kamia Narang

Abstract

Background & objectives: Botulinum toxin is considered as an effective treatment for spasticity in children with cerebral palsy (CP). However, there are only a few long-term studies, and the effects on motor function have been inconclusive. Moreover, due to its high cost and need for intensive post-injection therapy, utility in context of developing nations has not been established. This retrospective study was undertaken to assess the long term effects of botulinum toxin-A with physical therapy in children with CP.

Methods: This retrospective study was conducted at a tertiary care centre in India, where a limited supply of botulinum toxin was introduced in the year 2009. It was used in a selective group of patients with CP along with intensive physical therapies. All children who received lower-limb botulinum injections over a 42-month period were analyzed. For evaluation of treatment effect, the measurement at 1st pre-injection assessment and the last measurements, i.e. 12 wk after last injection received by that child were compared.

Results: Twenty nine patients (20 males, median age 51 months) received 69 sessions of botulinum toxin injections in the lower limbs over a 42-month period. Thirteen patients were diplegic, 10 were quadriplegic, five were triplegic and one was hemiplegic. There was a significant improvement in pre- and post-injection scores on Observational Gait Scale (right side 7.1±3.6 to 10.7±3.7, left side 6.7±3.5 to 9.9±3.4), Gross Motor Function Measure Scale (47.9±17.7 to 67.6±17.2), Modified Ashworth Scale, passive range of motion and Gross Motor Function Classification System. Most of the patients showed gain in motor milestones as well.

Interpretation & conclusions: Our results showed that judicious use of botulinum injections along with intensive physio/occupational therapies could yield good results in children with CP.

Keywords: Botulinum - cerebral palsy - intensive therapy - lower limbs - physical therapy - spasticity.

Conflict of interest statement

None

References

    1. Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B, et al. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol. 2005;47:571–6.
    1. Oskoui M, Coutinho F, Dykeman J, Jetté N, Pringsheim T. An update on the prevalence of cerebral palsy: A systematic review and meta-analysis. Dev Med Child Neurol. 2013;55:509–19.
    1. Rosenbloom L. Diagnosis and management of cerebral palsy. Arch Dis Child. 1995;72:350–4.
    1. Strobl W, Theologis T, Brunner R, Kocer S, Viehweger E, Pascual-Pascual I, et al. Best clinical practice in botulinum toxin treatment for children with cerebral palsy. Toxins (Basel) 2015;7:1629–48.
    1. Delgado MR, Hirtz D, Aisen M, Ashwal S, Fehlings DL, McLaughlin J, et al. for Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Practice parameter: Pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2010;74:336–43.
    1. Ryll U, Bastiaenen C, De Bie R, Staal B. Effects of leg muscle botulinum toxin A injections on walking in children with spasticity-related cerebral palsy: A systematic review. Dev Med Child Neurol. 2011;53:210–6.
    1. Sakzewski L, Ziviani J, Boyd RN. Efficacy of upper limb therapies for unilateral cerebral palsy: A meta-analysis. Pediatrics. 2014;133:e175–204.
    1. Hoare BJ, Wallen MA, Imms C, Villanueva E, Rawicki HB, Carey L. Botulinum toxin A as an adjunct to treatment in the management of the upper limb in children with spastic cerebral palsy (UPDATE) Cochrane Database Syst Rev. 2010;1:CD003469.
    1. Tedroff K, Löwing K, Haglund-Akerlind Y, Gutierrez-Farewik E, Forssberg H. Botulinum toxin A treatment in toddlers with cerebral palsy. Acta Paediatr. 2010;99:1156–62.
    1. Tedroff K, Granath F, Forssberg H, Haglund-Akerlind Y. Long-term effects of botulinum toxin A in children with cerebral palsy. Dev Med Child Neurol. 2009;51:120–7.
    1. Kanovský P, Bares M, Severa S, Richardson A Dysport Paediatric Limb Spasticity Study Group. Long-term efficacy and tolerability of 4-monthly versus yearly botulinum toxin type A treatment for lower-limb spasticity in children with cerebral palsy. Dev Med Child Neurol. 2009;51:436–45.
    1. Fattal-Valevski A, Domenievitz D, Giladi N, Wientroub S, Hayek S. Long-term effect of repeated injections of botulinum toxin in children with cerebral palsy: A prospective study. J Child Orthop. 2008;2:29–35.
    1. Ibrahim AI, Hawamdeh ZM, Al-Qudah AA. Functional outcome of botulinum toxin injection of gastrocnemius and adductors in spastic hemiplegic cerebral palsied children. Eura Medicophys. 2007;43:13–20.
    1. Linder M, Schindler G, Michaelis U, Stein S, Kirschner J, Mall V, et al. Medium-term functional benefits in children with cerebral palsy treated with botulinum toxin type A: 1-year follow-up using gross motor function measure. Eur J Neurol. 2001;8(Suppl 5):120–6.
    1. Chaléat-Valayer E, Parratte B, Colin C, Denis A, Oudin S, Bérard C, et al. A French observational study of botulinum toxin use in the management of children with cerebral palsy: BOTULOSCOPE. Eur J Paediatr Neurol. 2011;15:439–48.
    1. Juneja M, Jain R, Mishra D. Referral profile of a child development clinic in Northern India. Indian J Pediatr. 2012;79:602–5.
    1. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67:206–7.
    1. Russell DJ, Rosenbaum PL, Avery LM, Lane M. Gross Motor Function Measure (GMFM-66 and GMFM-88) User's Manual. London, UK: Mac Keith Press; 2002.
    1. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39:214–23.
    1. Boyd RN, Graham HK. Objective measurement of clinical findings in the use of botulinum toxin type A for the management of children with cerebral palsy. Eur J Neurol. 1999;6:s23–35.
    1. Reddihough DS, King JA, Coleman GJ, Fosang A, McCoy AT, Thomason P, et al. Functional outcome of botulinum toxin A injections to the lower limbs in cerebral palsy. Dev Med Child Neurol. 2002;44:820–7.
    1. Scholtes VA, Dallmeijer AJ, Knol DL, Speth LA, Maathuis CG, Jongerius PH, et al. The combined effect of lower-limb multilevel botulinum toxin type a and comprehensive rehabilitation on mobility in children with cerebral palsy: a randomized clinical trial. Arch Phys Med Rehabil. 2006;87:1551–8.
    1. Scholtes VA, Dallmeijer AJ, Knol DL, Speth LA, Maathuis CG, Jongerius PH, et al. Effect of multilevel botulinum toxin a and comprehensive rehabilitation on gait in cerebral palsy. Pediatr Neurol. 2007;36:30–9.
    1. Mall V, Heinen F, Siebel A, Bertram C, Hafkemeyer U, Wissel J, et al. Treatment of adductor spasticity with BTX-A in children with CP: A randomized, double-blind, placebo-controlled study. Dev Med Child Neurol. 2006;48:10–3.
    1. El-Etribi MA, Salem ME, El-Shakankiry HM, El-Kahky AM, El-Mahboub SM. The effect of botulinum toxin type-A injection on spasticity, range of motion and gait patterns in children with spastic diplegic cerebral palsy: An Egyptian study. Int J Rehabil Res. 2004;27:275–81.
    1. Ubhi T, Bhakta BB, Ives HL, Allgar V, Roussounis SH. Randomised double blind placebo controlled trial of the effect of botulinum toxin on walking in cerebral palsy. Arch Dis Child. 2000;83:481–7.

Source: PubMed

3
Prenumerera