An integrated (2)H and (13)C NMR study of gluconeogenesis and TCA cycle flux in humans

J G Jones, M A Solomon, S M Cole, A D Sherry, C R Malloy, J G Jones, M A Solomon, S M Cole, A D Sherry, C R Malloy

Abstract

Hepatic glucose synthesis from glycogen, glycerol, and the tricarboxylic acid (TCA) cycle was measured in five overnight-fasted subjects by (1)H, (2)H, and (13)C NMR analysis of blood glucose, urinary acetaminophen glucuronide, and urinary phenylacetylglutamine after administration of [1,6-(13)C(2)]glucose, (2)H(2)O, and [U-(13)C(3)]propionate. This combination of tracers allows three separate elements of hepatic glucose production (GP) to be probed simultaneously in a single study: 1) endogenous GP, 2) the contribution of glycogen, phosphoenolpyruvate (PEP), and glycerol to GP, and 3) flux through PEP carboxykinase, pyruvate recycling, and the TCA cycle. Isotope-dilution measurements of [1,6-(13)C(2)] glucose by (1)H and (13)C NMR indicated that GP in 16-h-fasted humans was 10.7 +/- 0.9 micromol.kg(-1).min(-1). (2)H NMR spectra of monoacetone glucose (derived from plasma glucose) provided the relative (2)H enrichment at glucose H-2, H-5, and H-6S, which, in turn, reflects the contribution of glycogen, PEP, and glycerol to total GP (5.5 +/- 0.7, 4.8 +/- 1.0, and 0.4 +/- 0.3 micromol.kg(-1).min(-1), respectively). Interestingly, (13)C NMR isotopomer analysis of phenylacetylglutamine and acetaminophen glucuronide reported different values for PEP carboxykinase flux (68.8 +/- 9.8 vs. 37.5 +/- 7.9 micromol.kg(-1).min(-1)), PEP recycling flux (59.1 +/- 9.8 vs. 27.8 +/- 6.8 micromol.kg(-1).min(-1)), and TCA cycle flux (10.9 +/- 1.4 vs. 5.4 +/- 1.4 micromol.kg(-1).min(-1)). These differences may reflect zonation of propionate metabolism in the liver.

Source: PubMed

3
Prenumerera