A randomized, double-blind, placebo-controlled phase II trial to explore the effects of a GABAA-α5 NAM (basmisanil) on intellectual disability associated with Down syndrome

Celia Goeldner, Priya S Kishnani, Brian G Skotko, Julian Lirio Casero, Joerg F Hipp, Michael Derks, Maria-Clemencia Hernandez, Omar Khwaja, Sian Lennon-Chrimes, Jana Noeldeke, Sabine Pellicer, Lisa Squassante, Jeannie Visootsak, Christoph Wandel, Paulo Fontoura, Xavier Liogier d'Ardhuy, Clematis Study Group, Rafael De La Torre Fornell, Paul Glue, Julie Hoover-Fong, Sonja Uhlmann, Jorge Malagón Valdez, Andrew Marshall, Federico Martinón-Torres, Lorenzo Redondo-Collazo, Carmen Rodriguez-Tenreiro, Valeria Marquez Chin, Adriana G Michel Reynoso, Ed A Mitchell, Rebecca F Slykerman, Trecia Wouldes, Sarah Loveday, Fernando Moldenhauer, Ramon Novell, Cesar Ochoa, Michael S Rafii, Anne-Sophie Rebillat, Damien Sanlaville, Pierre Sarda, Rohit Shankar, Margaret Pulsifer, Casey L Evans, Alexandra M Silva, Mary Ellen McDonough, Maria Stanley, Lindsay M McCary, Stefano Vicari, William Wilcox, Giuseppe Zampino, Alessandro Zuddas, Celia Goeldner, Priya S Kishnani, Brian G Skotko, Julian Lirio Casero, Joerg F Hipp, Michael Derks, Maria-Clemencia Hernandez, Omar Khwaja, Sian Lennon-Chrimes, Jana Noeldeke, Sabine Pellicer, Lisa Squassante, Jeannie Visootsak, Christoph Wandel, Paulo Fontoura, Xavier Liogier d'Ardhuy, Clematis Study Group, Rafael De La Torre Fornell, Paul Glue, Julie Hoover-Fong, Sonja Uhlmann, Jorge Malagón Valdez, Andrew Marshall, Federico Martinón-Torres, Lorenzo Redondo-Collazo, Carmen Rodriguez-Tenreiro, Valeria Marquez Chin, Adriana G Michel Reynoso, Ed A Mitchell, Rebecca F Slykerman, Trecia Wouldes, Sarah Loveday, Fernando Moldenhauer, Ramon Novell, Cesar Ochoa, Michael S Rafii, Anne-Sophie Rebillat, Damien Sanlaville, Pierre Sarda, Rohit Shankar, Margaret Pulsifer, Casey L Evans, Alexandra M Silva, Mary Ellen McDonough, Maria Stanley, Lindsay M McCary, Stefano Vicari, William Wilcox, Giuseppe Zampino, Alessandro Zuddas

Abstract

Background: There are currently no pharmacological therapies to address the intellectual disability associated with Down syndrome. Excitatory/inhibitory imbalance has been hypothesized to contribute to impairments in cognitive functioning in Down syndrome. Negative modulation of the GABAA-α5 receptor is proposed as a mechanism to attenuate GABAergic function and restore the excitatory/inhibitory balance.

Methods: Basmisanil, a selective GABAA-α5 negative allosteric modulator, was evaluated at 120 mg or 240 mg BID (80 or 160 mg for 12-13 years) in a 6-month, randomized, double-blind, placebo-controlled phase II trial (Clematis) for efficacy and safety in adolescents and young adults with Down syndrome. The primary endpoint was based on a composite analysis of working memory (Repeatable Battery for the Assessment of Neuropsychological Scale [RBANS]) and independent functioning and adaptive behavior (Vineland Adaptive Behavior Scales [VABS-II] or the Clinical Global Impression-Improvement [CGI-I]). Secondary measures included the Behavior Rating Inventory of Executive Functioning-Preschool (BRIEF-P), Clinical Evaluation of Language Fundamentals (CELF-4), and Pediatric Quality of Life Inventory (Peds-QL). EEG was conducted for safety monitoring and quantitatively analyzed in adolescents.

Results: Basmisanil was safe and well-tolerated; the frequency and nature of adverse events were similar in basmisanil and placebo arms. EEG revealed treatment-related changes in spectral power (increase in low ~ 4-Hz and decrease in high ~ 20-Hz frequencies) providing evidence of functional target engagement. All treatment arms had a similar proportion of participants showing above-threshold improvement on the primary composite endpoint, evaluating concomitant responses in cognition and independent functioning (29% in placebo, 20% in low dose, and 25% in high dose). Further analysis of the individual measures contributing to the primary endpoint revealed no difference between placebo and basmisanil-treated groups in either adolescents or adults. There were also no differences across the secondary endpoints assessing changes in executive function, language, or quality of life.

Conclusions: Basmisanil did not meet the primary efficacy objective of concomitant improvement on cognition and adaptive functioning after 6 months of treatment, despite evidence for target engagement. This study provides key learnings for future clinical trials in Down syndrome.

Trial registration: The study was registered on December 31, 2013, at clinicaltrials.gov as NCT02024789.

Keywords: Adaptive behavior; Cognition; Down syndrome; EEG; GABAA-α5.

Conflict of interest statement

At the time of the study, P Fontoura, C Goeldner, MC Hernandez, JF Hipp, O Khwaja, X Liogier d’Ardhuy, J Noeldeke, S Pellicer, L Squassante, C Wandel were employees of F.Hoffmann-La Roche AG Switzerland; M Derks and S Lennon-Chrimes were employees of Roche Products Ltd. UK; J Visootsak was an employee of Roche New York. All employees (former and current) may be eligible for stock and stock options. P S Kishnani has no disclosures for Down syndrome-related research. J Lirio Casero has no disclosures. B G Skotko occasionally consults on the topic of Down syndrome through the Gerson Lehrman Group. He receives remuneration from Down syndrome non-profit organizations for speaking engagements and associated travel expenses. Dr. Skotko receives annual royalties from Woodbine House, Inc., for the publication of his book, Fasten Your Seatbelt: A Crash Course on Down Syndrome for Brothers and Sisters. Within the past 2 years, he has also received research funding from AC Immune and LuMind Research Down Syndrome Foundation to conduct clinical trials for people with Down syndrome. Dr. Skotko is occasionally asked to serve as an expert witness for legal cases where Down syndrome is discussed. Dr. Skotko serves in a non-paid capacity on the Honorary Board of Directors for the Massachusetts Down Syndrome Congress and the Professional Advisory Committee for the National Center for Prenatal and Postnatal Down Syndrome Resources. Dr. Skotko has a sister with Down syndrome.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Participant disposition (CONSORT diagram)
Fig. 2
Fig. 2
Percent of participants with above-threshold improvement on the composite endpoint. A Primary efficacy endpoint after 6 months of treatment. Percent of participants with above-threshold improvement: B by age group (adolescents, adults) after 6 months of treatment; C combined age group after 3 months of treatment; D by age group (adolescents, adults) after 3 months of treatment. Above-threshold improvement on the composite endpoint was defined as having (1) a relevant increase in raw scores from baseline in at least two out of three tasks from the Repeatable Battery for the Assessment of Neuropsychological Status ([RBANS]; ≥ 2 points for list learning, ≥ 1 point for list recognition, ≥ 1 point for list recall); and (2) either an increase from baseline in the Vineland Adaptive Behavior Scales-II (VABS II) composite score of ≥ 7 or a Down syndrome-specific Clinical Global Impression-Improvement (DS-CGI-I) ≤ 3 (minimally improved). Efficacy assessments were performed at baseline and after 3 and 6 months of treatment. Statistics: *p < 0.05 vs. placebo-treated group
Fig. 3
Fig. 3
Quantitative EEG. A Change in EEG spectral power (average across week 2 and week 20 visits relative to baseline) for dosed (red) and the placebo (gray) groups. B, C Effects of assessment time-point (week 2 vs. week 20) and dose (low dose vs. high dose) for signal power extracted from the centers of the clusters identified in 1.2.3 (theta cluster, frequency range [3 bins]: ~ 3.5–4.5 Hz, electrodes: F3, Fz, F4, T7, T8, P7, P8, O1, O2; beta cluster, frequency range [3 bins]: ~ 19–22.5 Hz, electrodes: Fz, Cz). The top plots indicate the electrodes used for each extraction of signal power. The numbers at the base of the bars indicate the number of participants entering the analyses

References

    1. de Graaf G, Buckley F, Skotko BG. Estimation of the number of people with Down syndrome in the United States. Genet Med. 2017;19(4):439–447.
    1. de Graaf G, Buckley F, Skotko BG. Estimation of the number of people with Down syndrome in Europe. Eur J Hum Genet. 2021;29(3):402–10.
    1. Pennington BF, Moon J, Edgin J, Stedron J, Nadel L. The neuropsychology of Down syndrome: evidence for hippocampal dysfunction. Child Dev. 2003;74(1):75–93.
    1. Grieco J, Pulsifer M, Seligsohn K, Skotko B, Schwartz A. Down syndrome: cognitive and behavioral functioning across the lifespan. Am J Med Genet C Semin Med Genet. 2015;169(2):135–149.
    1. Golden JA, Hyman BT. Development of the superior temporal neocortex is anomalous in trisomy 21. J Neuropathol Exp Neurol. 1994;53(5):513–520.
    1. Schmidt-Sidor B, Wisniewski KE, Shepard TH, Sersen EA. Brain growth in Down syndrome subjects 15 to 22 weeks of gestational age and birth to 60 months. Clin Neuropathol. 1990;9(4):181–190.
    1. Weitzdoerfer R, Dierssen M, Fountoulakis M, Lubec G. Fetal life in Down syndrome starts with normal neuronal density but impaired dendritic spines and synaptosomal structure. J Neural Transm Suppl. 2001;61:59–70.
    1. Baxter LL, Moran TH, Richtsmeier JT, Troncoso J, Reeves RH. Discovery and genetic localization of Down syndrome cerebellar phenotypes using the Ts65Dn mouse. Hum Mol Genet. 2000;9(2):195–202.
    1. Chakrabarti L, Galdzicki Z, Haydar TF. Defects in embryonic neurogenesis and initial synapse formation in the forebrain of the Ts65Dn mouse model of Down syndrome. J Neurosci. 2007;27(43):11483–11495.
    1. Lorenzi HA, Reeves RH. Hippocampal hypocellularity in the Ts65Dn mouse originates early in development. Brain Res. 2006;1104(1):153–159.
    1. Belichenko PV, Kleschevnikov AM, Masliah E, Wu C, Takimoto-Kimura R, Salehi A, et al. Excitatory-inhibitory relationship in the fascia dentata in the Ts65Dn mouse model of Down syndrome. J Comp Neurol. 2009;512(4):453–466.
    1. Perez-Cremades D, Hernandez S, Blasco-Ibanez JM, Crespo C, Nacher J, Varea E. Alteration of inhibitory circuits in the somatosensory cortex of Ts65Dn mice, a model for Down's syndrome. J Neural Transm (Vienna). 2010;117(4):445–455.
    1. Kurt MA, Davies DC, Kidd M, Dierssen M, Florez J. Synaptic deficit in the temporal cortex of partial trisomy 16 (Ts65Dn) mice. Brain Res. 2000;858(1):191–197.
    1. Braudeau J, Delatour B, Duchon A, Pereira PL, Dauphinot L, de Chaumont F, et al. Specific targeting of the GABA-A receptor alpha5 subtype by a selective inverse agonist restores cognitive deficits in Down syndrome mice. J Psychopharmacol. 2011;25(8):1030–1042.
    1. Martinez-Cue C, Martinez P, Rueda N, Vidal R, Garcia S, Vidal V, et al. Reducing GABAA alpha5 receptor-mediated inhibition rescues functional and neuromorphological deficits in a mouse model of down syndrome. J Neurosci. 2013;33(9):3953–3966.
    1. Gasser R, Hernandez MC, Thomas AW. Use of selective GABA A alpha 5 negative allosteric modulators for the treatment of central nervous system conditions. US2012115839(A1) 2012. p. 2012.
    1. Little HJ, Nutt DJ, Taylor SC. Acute and chronic effects of the benzodiazepine receptor ligand FG 7142: proconvulsant properties and kindling. Br J Pharmacol. 1984;83(4):951–958.
    1. Dorow R, Horowski R, Paschelke G, Amin M. Severe anxiety induced by FG 7142, a beta-carboline ligand for benzodiazepine receptors. Lancet. 1983;2(8341):98–99.
    1. Hipp JF, Knoflach F, Comley R, Ballard TM, Honer M, Trube G, et al. Basmisanil, a highly selective GABAA-alpha5 negative allosteric modulator: preclinical pharmacology and demonstration of functional target engagement in man. Sci Rep. 2021;11(1):7700.
    1. Pearson . Clinical Evaluation of Language Fundamentals - Preschool-2 (CELF-Preschool-2) 2004.
    1. Glenn S, Cunningham C. Performance of young people with Down syndrome on the Leiter-R and British picture vocabulary scales. J Intellect Disabil Res. 2005;49(Pt 4):239–244.
    1. Liogier d’Ardhuy X, Edgin JO, Bouis C, de Sola S, Goeldner C, Kishnani P, et al. Assessment of cognitive scales to examine memory, executive function and language in individuals with Down syndrome: implications of a 6-month observational study. Front. Behav Neurosci. 2015;9:300.
    1. Spiridigliozzi GA, Goeldner C, Edgin J, Hart SJ, Noeldeke J, Squassante L, et al. Adaptive behavior in adolescents and adults with Down syndrome: results from a 6-month longitudinal study. Am J Med Genet A. 2019;179(1):85–93.
    1. Masi A, Lampit A, Glozier N, Hickie IB, Guastella AJ. Predictors of placebo response in pharmacological and dietary supplement treatment trials in pediatric autism spectrum disorder: a meta-analysis. Transl Psychiatry. 2015;5:e640.
    1. Jeste SS, Geschwind DH. Clinical trials for neurodevelopmental disorders: at a therapeutic frontier. Sci Transl Med. 2016;8(321):321fs1.
    1. Kishnani PS, Sommer BR, Handen BL, Seltzer B, Capone GT, Spiridigliozzi GA, et al. The efficacy, safety, and tolerability of donepezil for the treatment of young adults with Down syndrome. Am J Med Genet A. 2009;149A(8):1641–1654.
    1. Erickson CA, Davenport MH, Schaefer TL, Wink LK, Pedapati EV, Sweeney JA, et al. Fragile X targeted pharmacotherapy: lessons learned and future directions. J Neurodev Disord. 2017;9:7.
    1. de la Torre R, de Sola S, Hernandez G, Farre M, Pujol J, Rodriguez J, et al. Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Downʼs syndrome (TESDAD): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(8):801–810.
    1. Babiloni C, Albertini G, Onorati P, Vecchio F, Buffo P, Sarà M, et al. Inter-hemispheric functional coupling of eyes-closed resting EEG rhythms in adolescents with Down syndrome. Clin Neurophysiol. 2009;120(9):1619–1627.
    1. Babiloni C, Albertini G, Onorati P, Muratori C, Buffo P, Condoluci C, et al. Cortical sources of EEG rhythms are abnormal in down syndrome. Clin Neurophysiol. 2010;121(8):1205–1212.
    1. Velikova S, Magnani G, Arcari C, Falautano M, Franceschi M, Comi G, et al. Cognitive impairment and EEG background activity in adults with Downʼs syndrome: a topographic study. Hum Brain Mapp. 2011;32(5):716–729.
    1. Friedman H, Greenblatt DJ, Peters GR, Metzler CM, Charlton MD, Harmatz JS, et al. Pharmacokinetics and pharmacodynamics of oral diazepam: effect of dose, plasma concentration, and time. Clin Pharmacol Ther. 1992;52(2):139–150.
    1. Malizia AL, Gunn RN, Wilson SJ, Waters SH, Bloomfield PM, Cunningham VJ, et al. Benzodiazepine site pharmacokinetic/pharmacodynamic quantification in man: direct measurement of drug occupancy and effects on the human brain in vivo. Neuropharmacology. 1996;35(9-10):1483–1491.
    1. Frohlich J, Miller MT, Bird LM, Garces P, Purtell H, Hoener MC, et al. Electrophysiological phenotype in angelman syndrome differs between genotypes. Biol Psychiatry. 2019;85(9):752–759.
    1. Frohlich J, Reiter LT, Saravanapandian V, DiStefano C, Huberty S, Hyde C, et al. Mechanisms underlying the EEG biomarker in Dup15q syndrome. Mol Autism. 2019;10:29.
    1. Porjesz B, Almasy L, Edenberg HJ, Wang K, Chorlian DB, Foroud T, et al. Linkage disequilibrium between the beta frequency of the human EEG and a GABAA receptor gene locus. Proc Natl Acad Sci U S A. 2002;99(6):3729–3733.
    1. Smit DJA, Wright MJ, Meyers JL, Martin NG, Ho YYW, Malone SM, et al. Genome-wide association analysis links multiple psychiatric liability genes to oscillatory brain activity. Hum Brain Mapp. 2018;39(11):4183–4195.
    1. Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH. Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol. 2000;38(3):315–336.
    1. Traub RDWM, Jefferys JGR. Fast oscillations in cortical circuits. Cambridge: The MIT Press; 1999.
    1. Gravielle MC. Activation-induced regulation of GABAA receptors: Is there a link with the molecular basis of benzodiazepine tolerance? Pharmacol Res. 2016;109:92–100.
    1. Vinkers CH, Olivier B. Mechanisms underlying tolerance after long-term benzodiazepine use: a future for subtype-selective GABA(A) receptor modulators? Adv Pharmacol Sci. 2012;2012:416864.
    1. Marin O. Developmental timing and critical windows for the treatment of psychiatric disorders. Nat Med. 2016;22(11):1229–1238.
    1. Sturgeon X, Gardiner KJ. Transcript catalogs of human chromosome 21 and orthologous chimpanzee and mouse regions. Mamm Genome. 2011;22(5-6):261–271.
    1. Dierssen M, Fructuoso M, Martinez de Lagran M, Perluigi M, Barone E. Down syndrome is a metabolic disease: altered insulin signaling mediates peripheral and brain dysfunctions. Front Neurosci. 2020;14:670.
    1. Hart SJ, Visootsak J, Tamburri P, Phuong P, Baumer N, Hernandez MC, et al. Pharmacological interventions to improve cognition and adaptive functioning in Down syndrome: Strides to date. Am J Med Genet A. 2017;173(11):3029–3041.

Source: PubMed

3
Prenumerera