Spectral Analysis of EEG in Familial Alzheimer's Disease with E280A Presenilin-1 Mutation Gene

Rene Rodriguez, Francisco Lopera, Alfredo Alvarez, Yuriem Fernandez, Lidice Galan, Yakeel Quiroz, Maria Antonieta Bobes, Rene Rodriguez, Francisco Lopera, Alfredo Alvarez, Yuriem Fernandez, Lidice Galan, Yakeel Quiroz, Maria Antonieta Bobes

Abstract

To evaluate the hypothesis that quantitative EEG (qEEG) analysis is susceptible to detect early functional changes in familial Alzheimer's disease (AD) preclinical stages. Three groups of subjects were selected from five extended families with hereditary AD: a Probable AD group (18 subjects), an asymptomatic carrier (ACr) group (21 subjects), with the mutation but without any clinical symptoms of dementia, and a normal group of 18 healthy subjects. In order to reveal significant differences in the spectral parameter, the Mahalanobis distance (D (2)) was calculated between groups. To evaluate the diagnostic efficiency of this statistic D (2), the ROC models were used. The ROC curve was summarized by accuracy index and standard deviation. The D (2) using the parameters of the energy in the fast frequency bands shows accurate discrimination between normal and ACr groups (area ROC = 0.89) and between AD probable and ACr groups (area ROC = 0.91). This is more significant in temporal regions. Theses parameters could be affected before the onset of the disease, even when cognitive disturbance is not clinically evident. Spectral EEG parameter could be firstly used to evaluate subjects with E280A Presenilin-1 mutation without impairment in cognitive function.

Figures

Figure 1
Figure 1
Averaged spectral power in the three groups. In y-axis are represented the values of the logarithm of the spectrum for each value of frequencies and derivation.
Figure 2
Figure 2
Histograms of D2 calculated for the Z log spectra of the narrow band model. The x-axis shows the values of the Mahalanobis distance for each subjects. Y-axis shows the observed frequencies (number of subjects).
Figure 3
Figure 3
Histograms of D2 for Z log spectral values in two regions of the three groups. In x-axis are represent the values of Mahalanobis distance for each subject. y-axis represents the observed frequencies.
Figure 4
Figure 4
Histograms of D2 calculated in (a) slow (delta theta) and (b) fast (alpha beta) frequencies for all regions of the three groups. The x-axis shows the values of the Mahalanobis distance for each subjects. Y-axis shows the observed frequencies (number of subjects).

References

    1. Robles A, del Ser T, Alom J, Peña-Casanova J. Propuesta de criterios para el diagnóstico clínico del deterioro cognitivo ligero, la demencia y la Enfermedad de Alzheimer. Neurologia. 2002;17:17–32.
    1. Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clinical Neurophysiology. 2004;115(7):1490–1505.
    1. Braak H, Braak E. Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease. Neurobiology of Aging. 1997;18(4):S85–S88.
    1. Grober E, Dickson D, Sliwinski MJ, et al. Memory and mental status correlates of modified Braak staging. Neurobiology of Aging. 1999;20(6):573–579.
    1. Mayeux R. Early Alzheimer’s disease. The New England Journal of Medicine. 2010;362(23):2194–2201.
    1. Kemp AS, Grossberg GI, Romano SJ, et al. Trial designs likely to meet valid long-term Alzheimer ’s disease progression effects: learning from the past, preparing for the future. International Journal of Alzheimer's Disease. 2009;2009:7 pages.949271
    1. Babiloni C, Vecchio F, Lizio R, et al. Resting state cortical rhythms in mild cognitive impairment and Alzheimers disease: electroencephalographic evidence. Journal of Alzheimer’s Disease. 2011;26(3):201–214.
    1. DeCarli C. The role of neuroimaging in dementia. Clinics in Geriatric Medicine. 2001;17(2):255–279.
    1. Iqbal K, Alonso ADC, El-Akkad E, et al. Significance and mechanism of Alzheimer neurofibrillary degeneration and therapeutic targets to inhibit this lesion. Journal of Molecular Neuroscience. 2002;19(1-2):95–99.
    1. Rogaeva E, Kawarai T, St. George-Hyslop P. Genetic complexity of Alzheimer’s disease: successes and challenges. Journal of Alzheimer’s Disease. 2006;9(3):381–387.
    1. Rademakers R, Cruts M, van Broeckhoven C. Genetics of early-onset Alzheimer dementia. TheScientificWorldJournal. 2003;3:497–519.
    1. Lopera F, Ardilla A, Martínez A, et al. Clinical features of early-onset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation. Journal of the American Medical Association. 1997;277(10):793–799.
    1. Price JL, McKeel DW, Jr., Buckles VD, et al. Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiology of Aging. 2009;30(7):1026–1036.
    1. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology. 1999;56(3):303–308.
    1. Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Archives of Neurology. 2001;58(12):1985–1992.
    1. Frisoni GB, Padovani A, Wahlund L-O. The predementia diagnosis of Alzheimer disease. Alzheimer Disease and Associated Disorders. 2004;18(2):51–53.
    1. Rossini PM, Del Percio C, Pasqualetti P, et al. Conversion from mild cognitive impairment to Alzheimer’s disease is predicted by sources and coherence of brain electroencephalography rhythms. Neuroscience. 2006;143(3):793–803.
    1. Luckhaus C, Grass-Kapanke B, Blaeser I, et al. Quantitative EEG in progressing vs stable mild cognitive impairment (MCI): results of a 1-year follow-up study. International Journal of Geriatric Psychiatry. 2008;23(11):1148–1155.
    1. Comi G, Leocani L. Neurophysiological imaging techniques in dementia. Italian Journal of Neurological Sciences. 1999;20(5):S265–S269.
    1. Dauwels J, Vialatte F, Cichocki A. Diagnosis of Alzheimer’s disease from EEG signals: where are we standing? Current Alzheimer Research. 2010;7(6):487–505.
    1. Katz RI, Horner RN. Electroencephalography in aging. In: Albert ML, editor. Clinical Neurology of Aging. New York, NY, USA: Oxford University Press; 1984.
    1. Penttila M, Partanen JV, Soininen H, Riekkinen PJ. Quantitative analysis of occipital EEG in different stages of Alzheimer’s disease. Electroencephalography and Clinical Neurophysiology. 1985;60(1):1–6.
    1. Soininen H, Partanen J, Laulumaa V, Helkala E-L, Laakso M, Riekkinen PJ. Longitudinal EEG spectral analysis in early stage of Alzheimer’s disease. Electroencephalography and Clinical Neurophysiology. 1989;72(4):290–297.
    1. Primavera A, Novello P, Finocchi C, Canevari E, Corsello L. Correlation between mini-mental state examination and quantitative electroencephalography in senile dementia of Alzheimer type. Neuropsychobiology. 1990;23(2):74–78.
    1. Dierks T, Ihl R, Frolich L, Maurer K. Dementia of the Alzheimer type: effects on the spontaneous EEG described by dipole sources. Psychiatry Research. 1993;50(3):151–162.
    1. Dierks T, Perisic I, Frolich L, Ihl R, Maurer K. Topography of the quantitative electroencephalogram in dementia of the Alzheimer type: relation to severity of dementia. Psychiatry Research. 1991;40(3):181–194.
    1. Jonkman EJ. The role of the electroencephalogram in the diagnosis of dementia of the Alzheimer type: an attempt at technology assessment. Neurophysiologie Clinique. 1997;27(3):211–219.
    1. Soininen H, Partanen J, Laulumaa V, Paakkonen A, Helkala E-L, Riekkinen PJ. Serial EEG in Alzheimer’s disease: 3 year follow-up and clinical outcome. Electroencephalography and Clinical Neurophysiology. 1991;79(5):342–348.
    1. Baker M, Akrofi K, Schiffer R, O'Boyle MW. EEG patterns in mild cognitive impairment (MCI) patients. The Open Neuroimaging Journal. 2008;2:52–55.
    1. Kwak YT. Quantitative EEG findings in different stages of Alzheimer’s disease. Journal of Clinical Neurophysiology. 2006;23(5):457–462.
    1. Nobili F, Copello F, Vitali P, et al. Timing of disease progression by quantitative EEG in Alzheimer’s patients. Journal of Clinical Neurophysiology. 1999;16(6):566–573.
    1. Rodriguez G, Copello F, Vitali P, Perego G, Nobili F. EEG spectral profile to stage Alzheimer’s disease. Clinical Neurophysiology. 1999;110(10):1831–1837.
    1. Alhainen K, Riekkinen PJ., Sr. Discrimination of Alzheimer patients responding to cholinesterase inhibitor therapy. Acta Neurologica Scandinavica. 1993;88(149):16–21.
    1. Babiloni C, Cassetta E, Binetti G, et al. Resting EEG sources correlate with attentional span in mild cognitive impairment and Alzheimer’s disease. European Journal of Neuroscience. 2007;25(12):3742–3757.
    1. van der Hiele K, Vein AA, Reijntjes RHAM, et al. EEG correlates in the spectrum of cognitive decline. Clinical Neurophysiology. 2007;118(9):1931–1939.
    1. Durwen HE, Penin H. Electroencephalography findings in dementia diseases. Fortschritte der Neurologie-Psychiatrie. 1992;60:12460–12470.
    1. Dierks T, Jelic V, Pascual-Marqui RD, et al. Spatial pattern of cerebral glucose metabolism (PET) correlates with localization of intracerebral EEG-generators in Alzheimer’s disease. Clinical Neurophysiology. 2000;111(10):1817–1824.
    1. Huang C, Wahlund L-O, Dierks T, Julin P, Winblad B, Jelic V. Discrimination of Alzheimer’s disease and mild cognitive impairment by equivalent EEG sources: A cross-sectional and longitudinal study. Clinical Neurophysiology. 2000;111(11):1961–1967.
    1. Ponomareva NV, Selesneva ND, Jarikov GA. EEG alterations in subjects at high familial risk for Alzheimer’s disease. Neuropsychobiology. 2003;48(3):152–159.
    1. Babiloni C, Binetti G, Cassetta E, et al. Mapping distributed sources of cortical rhythms in mild Alzheimer’s disease. A multicentric EEG study. NeuroImage. 2004;22(1):57–67.
    1. Prichep LS. Use of normative databases and statistical methods in demonstrating clinical utility of QEEG: Importance and cautions. Clinical EEG and Neuroscience. 2005;36(2):82–87.
    1. Sloan EP, Fenton GW, Kennedy NSJ, MacLennan JM. Electroencephalography and single photon emission computed tomography in dementia: a comparative study. Psychological Medicine. 1995;25(3):631–638.
    1. Giannitrapani D, Cllins J, Vassilliadis D. The spectra of Alzheimer’s disease. International Journal of Psychophysiology. 1991;10:3259–3269.
    1. Leuchter AF, Cook IA, Newton TF, et al. Regional differences in brain electrical activity in dementia: use of spectral power and spectral ratio measures. Electroencephalography and Clinical Neurophysiology. 1993;87(6):385–393.
    1. Lawrence AD, Sahakian BJ, Robbins TW. Cognitive functions and corticostriatal circuits: insights from Huntington’s disease. Trends in Cognitive Sciences. 1998;2(10):379–388.
    1. Moretti DV, Babiloni C, Binetti G, et al. Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clinical Neurophysiology. 2004;115(2):299–308.
    1. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews. 1999;29(2-3):169–195.
    1. Babiloni C, Binetti G, Cassetta E, et al. Sources of cortical rhythms change as a function of cognitive impairment in pathological aging: a multicenter study. Clinical Neurophysiology. 2006;117(2):252–268.
    1. Folstein MF, Folstein SE, Mc Hugh PR. 'Minimental state' a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research. 1975;12:189–198.
    1. McKhann G, Drachman D, Folstein M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology. 1984;34(7):939–944.
    1. Szava S, Valdes P, Biscay R, et al. High resolution quantitative EEG analysis. Brain Topography. 1994;6(3):211–219.
    1. Valdes PA, Biscay R, Galán L, Bosch J, Száva S, Virués T. High resolution spectral norms for topography. Brain Topography. 1990;32:281–282.
    1. Valdes P, Bosch J, Grave R, Riera J, Pascual R, Biscay R. Frequency domain models of the EEG activity in the presence of brain lesion. Clinical Electroencephalography. 1999;30:46–52.
    1. Stam CJ, Van Cappellen van Walsum AM, Pijnenburg YAL, et al. Generalized synchronization of MEG recordings in Alzheimer’s disease: evidence for involvement of the gamma band. Journal of Clinical Neurophysiology. 2002;19(6):562–574.
    1. Galan L, Biscay R, Valdes P, Neira L, Virues T. Multivariate statistical brain electromagnetic mapping. Brain Topography. 1994;7(1):17–28.
    1. John ER, Prichep LS, Easton P. Normative data banks and neurometrics. Basic concepts, methods and results of norms construction. In: Gevins AS, Remond A, editors. Handbook of Electroencephalography and Clinical Neurophysiology. Vol. 1. Amsterdam, The Netherlands: Elsevier Science Publishers B.V.; 1987. pp. 449–495.
    1. Basar E, Basar-Eroglu C, Karakas S, Schurmenn M. Gamma, alpha, delta and theta oscillation govern cognitive process. International Journal of Psychophysiology. 2001;39:241–248.
    1. Teipel SJ, Pogarell O, Meindl T, et al. Regional networks underlying interhemispheric connectivity: an EEG and DTI study in healthy ageing and amnestic mild cognitive impairment. Human Brain Mapping. 2009;30(7):2098–2119.
    1. Baker M, Akrofi K, Schiffer R, Michael WO. EEG patterns in mild cognitive impairment (MCI) patients. The Open Neuroimaging Journal. 2008;2:52–55.
    1. Czigler B, Csikos D, Hidasi Z, et al. Quantitative EEG in early Alzheimer’s disease patients—power spectrum and complexity features. International Journal of Psychophysiology. 2008;68(1):75–80.
    1. Moretti DV, Fracassi C, Pievani M, et al. Increase of theta/gamma ratio is associated with memory impairment. Clinical Neurophysiology. 2009;120(2):295–303.
    1. Csibra G, Davis G, Spratling MW, Johnson MH. Gamma oscillations and object processing in the infant brain. Science. 2000;290(5496):1582–1585.
    1. Müller MM, Gruber T, Keil A. Modulation of induced gamma band activity in the human EEG by attention and visual information processing. International Journal of Psychophysiology. 2000;38(3):283–299.
    1. Claus JJ, Ongerboer de Visser BW, Walstra GJM, Hijdra A, Verbeeten B, Jr., van Gool WA. Quantitative spectral electroencephalography in predicting survival in patients with early Alzheimer disease. Archives of Neurology. 1998;55(8):1105–1111.
    1. Stam CJ, Van Der Made Y, Pijnenburg YAL, Scheltens P. EEG synchronization in mild cognitive impairment and Alzheimer’s disease. Acta Neurologica Scandinavica. 2003;108(2):90–96.
    1. Stam CJ. Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clinical Neurophysiology. 2005;116(10):2266–2301.
    1. Villa AEP, Tetko IV, Dutoit P, Vantini G. Non-linear cortico-cortical interactions modulated by cholinergic afferences from the rat basal forebrain. BioSystems. 2000;58(1–3):219–228.
    1. Prichep LS. Quantitative EEG and electromagnetic brain imaging in aging and in the evolution of dementia. Annals of the New York Academy of Sciences. 2007;1097:156–167.
    1. Başar E, Güntekin B. A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Research. 2008;1235:172–193.

Source: PubMed

3
Prenumerera