Combined Mass Spectrometry Imaging and Top-down Microproteomics Reveals Evidence of a Hidden Proteome in Ovarian Cancer

Vivian Delcourt, Julien Franck, Eric Leblanc, Fabrice Narducci, Yves-Marie Robin, Jean-Pascal Gimeno, Jusal Quanico, Maxence Wisztorski, Firas Kobeissy, Jean-François Jacques, Xavier Roucou, Michel Salzet, Isabelle Fournier, Vivian Delcourt, Julien Franck, Eric Leblanc, Fabrice Narducci, Yves-Marie Robin, Jean-Pascal Gimeno, Jusal Quanico, Maxence Wisztorski, Firas Kobeissy, Jean-François Jacques, Xavier Roucou, Michel Salzet, Isabelle Fournier

Abstract

Background: Recently, it was demonstrated that proteins can be translated from alternative open reading frames (altORFs), increasing the size of the actual proteome. Top-down mass spectrometry-based proteomics allows the identification of intact proteins containing post-translational modifications (PTMs) as well as truncated forms translated from reference ORFs or altORFs.

Methods: Top-down tissue microproteomics was applied on benign, tumor and necrotic-fibrotic regions of serous ovarian cancer biopsies, identifying proteins exhibiting region-specific cellular localization and PTMs. The regions of interest (ROIs) were determined by MALDI mass spectrometry imaging and spatial segmentation.

Findings: Analysis with a customized protein sequence database containing reference and alternative proteins (altprots) identified 15 altprots, including alternative G protein nucleolar 1 (AltGNL1) found in the tumor, and translated from an altORF nested within the GNL1 canonical coding sequence. Co-expression of GNL1 and altGNL1 was validated by transfection in HEK293 and HeLa cells with an expression plasmid containing a GNL1-FLAG(V5) construct. Western blot and immunofluorescence experiments confirmed constitutive co-expression of altGNL1-V5 with GNL1-FLAG.

Conclusions: Taken together, our approach provides means to evaluate protein changes in the case of serous ovarian cancer, allowing the detection of potential markers that have never been considered.

Keywords: Alternative proteins; Biomarkers; Hidden proteome; Microproteomics; Ovarian cancer; Top-down.

Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

Figures

Fig. 1
Fig. 1
Association of MALDI-MSI and top-down microproteomics. (a) MALDI-MSI of lipids and optical image, (b) histological annotation and segmentation analysis using the Bisecting k-Means and Correlation Distance approach (left). (c) Venn diagram of the top-down gene reference products identified in the ovarian cancer tissue by the LMJ approach, the PAM approach and total, (d) Precursor and HCD fragmentation scan of Keratin 2 cytoskeletal 8 fragment 425–483 and Macrophage migration inhibitory factor (MIF).
Fig. 2
Fig. 2
Systems biology analysis. Global network identification of the proteins present in benign (a), necrotic-fibrotic tumor (b) and tumor regions (c).
Fig. 3
Fig. 3
GO Enrichment analysis of benign (a), necrotic/fibrotic tumor (b) and tumor region (c). (d) Global network analysis between benign and necrotic-fibrotic tumor region, between tumor and necrotic-fibrotic tumor, and between benign and tumor showed proteins involved in cell death, cell growth, keloid and muscle cell differentiation.
Fig. 4
Fig. 4
Precursor and HCD fragmentation scan of Alternative Guanine Nucleotide-binding Protein-like 1 (AltGNL1).
Fig. 5
Fig. 5
Validation of co-expression of reference protein GNL1 and its alternative protein AltGNL1. (a) Schematic representation of the mRNA product from GNL1 (AltGNL1) plasmid used for validation. (b) Western blot showing co-expression of GNL1 (FLAG tagged) and AltGNL1 (V5 tagged) and (c) immunofluorescence assay showing co-expression at cell level with nucleus staining (DAPI, blue) AltGNL1-V5 (green), GNL1 (red) and merge panel. White bars represent 10 μm.

References

    1. Agarwal R., Whang D.H., Alvero A.B., Visintin I., Lai Y., Segal E.A., Schwartz P., Ward D., Rutherford T., Mor G. Macrophage migration inhibitory factor expression in ovarian cancer. Am. J. Obstet. Gynecol. 2007;196:348.e1–348.e5.
    1. Alexandrov T., Meding S., Trede D., Kobarg J.H., Balluff B., Walch A., Thiele H., Maass P. Super-resolution segmentation of imaging mass spectrometry data: solving the issue of low lateral resolution. J. Proteome. 2011;75:237–245.
    1. Beaino W., Guo Y., Chang A.J., Anderson C.J. Roles of Atox1 and p53 in the trafficking of copper-64 to tumor cell nuclei: implications for cancer therapy. J. Biol. Inorg. Chem. 2014;19:427–438.
    1. Bonnel D., Longuespee R., Franck J., Roudbaraki M., Gosset P., Day R., Salzet M., Fournier I. Multivariate analyses for biomarkers hunting and validation through on-tissue bottom-up or in-source decay in MALDI-MSI: application to prostate cancer. Anal. Bioanal. Chem. 2011;401:149–165.
    1. Bonnet A., Lagarrigue S., Liaubet L., Robert-Granié C., Sancristobal M., Tosser-Klopp G. Pathway results from the chicken data set using GOTM, pathway studio and ingenuity softwares. BMC Proc. 2009;3(Suppl. 4):S11.
    1. Bourguignon L.Y., Zhu H., Shao L., Chen Y.W. CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration. J. Biol. Chem. 2001;276:7327–7336.
    1. Bruand J., Alexandrov T., Sistla S., Wisztorski M., Meriaux C., Becker M., Salzet M., Fournier I., MacAgno E., Bafna V. AMASS: algorithm for MSI analysis by semi-supervised segmentation. J. Proteome Res. 2011;10:4734–4743.
    1. Chen H., Wang L., Beretov J., Hao J., Xiao W., Li Y. Co-expression of CD147/EMMPRIN with monocarboxylate transporters and multiple drug resistance proteins is associated with epithelial ovarian cancer progression. Clin. Exp. Metastasis. 2010;27:557–569.
    1. Chu P., Wu E., Weiss L.M. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod. Pathol. 2000;13:962–972.
    1. Croce C.M., Sozzi G., Huebner K. Role of FHIT in human cancer. J. Clin. Oncol. 1999;17:1618–1624.
    1. Franck J., Quanico J., Wisztorski M., Day R., Salzet M., Fournier I. Quantification-based mass spectrometry imaging of proteins by parafilm assisted microdissection. Anal. Chem. 2013;85:8127–8134.
    1. Gibson D.G., Young L., Chuang R.-Y., Venter J.C., Hutchison C. a, Smith H.O., Iii C.A.H., America N. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 2009;6:343–345.
    1. Guo Y., Fu P., Zhu H., Reed E., Remick S.C., Petros W., Mueller M.D., Yu J.J. Correlations among ERCC1, XPB, UBE2I, EGF, TAL2 and ILF3 revealed by gene signatures of histological subtypes of patients with epithelial ovarian cancer. Oncol. Rep. 2012;27:286–292.
    1. Hagemann T., Wilson J., Kulbe H., Li N.F., Leinster D.A., Charles K., Klemm F., Pukrop T., Binder C., Balkwill F.R. Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. J. Immunol. 2005;175:1197–1205.
    1. Heberle H., Meirelles G.V., da Silva F.R., Telles G.P., Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16:169.
    1. Hsu C.Y.M., Uludağ H. A simple and rapid nonviral approach to efficiently transfect primary tissue-derived cells using polyethylenimine. Nat. Protoc. 2012;7:935–945.
    1. Hudson J.D., Shoaibi M.A., Maestro R., Carnero A., Hannon G.J., Beach D.H. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J. Exp. Med. 1999;190:1375–1382.
    1. Kellie J.F., Tran J.C., Lee J.E., Ahlf D.R., Thomas H.M., Ntai I., Catherman A.D., Durbin K.R., Zamdborg L., Vellaichamy A., Thomas P.M., Kelleher N.L. The emerging process of top down mass spectrometry for protein analysis: biomarkers, protein-therapeutics, and achieving high throughput. Mol. BioSyst. 2010;6:1532–1539.
    1. Kellie J.F., Catherman A.D., Durbin K.R., Tran J.C., Tipton J.D., Norris J.L., Witkowski C.E., Thomas P.M., Kelleher N.L. Robust analysis of the yeast proteome under 50 kDa by molecular-mass-based fractionation and top-down mass spectrometry. Anal. Chem. 2012;84:209–215.
    1. Koensgen D., Mustea A., Klaman I., Sun P., Zafrakas M., Lichtenegger W., Denkert C., Dahl E., Sehouli J. Expression analysis and RNA localization of PAI-RBP1 (SERBP1) in epithelial ovarian cancer: association with tumor progression. Gynecol. Oncol. 2007;107:266–273.
    1. Kondo S., Lu Y., Debbas M., Lin A.W., Sarosi I., Itie A., Wakeham A., Tuan J., Saris C., Elliott G., Ma W., Benchimol S., Lowe S.W., Mak T.W., Thukral S.K. Characterization of cells and gene-targeted mice deficient for the p53-binding kinase homeodomain-interacting protein kinase 1 (HIPK1) Proc. Natl. Acad. Sci. U. S. A. 2003;100:5431–5436.
    1. Krockenberger M., Dombrowski Y., Weidler C., Ossadnik M., Hönig A., Häusler S., Voigt H., Becker J.C., Leng L., Steinle A., Weller M., Bucala R., Dietl J., Wischhusen J. Macrophage migration inhibitory factor contributes to the immune escape of ovarian cancer by down-regulating NKG2D. J. Immunol. 2008;180:7338–7348.
    1. Lemaire R., Menguellet S.A., Stauber J., Marchaudon V., Lucot J.P., Collinet P., Farine M.O., Vinatier D., Day R., Ducoroy P., Salzet M., Fournier I. Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, reg alpha fragment, is a new potential ovary cancer biomarker. J. Proteome Res. 2007;6:4127–4134.
    1. Li M., Yin J., Mao N., Pan L. Upregulation of phosphorylated cofilin 1 correlates with taxol resistance in human ovarian cancer in vitro and in vivo. Oncol. Rep. 2013;29:58–66.
    1. Liu Y., Han X., Gao B. Knockdown of S100A11 expression suppresses ovarian cancer cell growth and invasion. Exp. Ther. Med. 2015;9:1460–1464.
    1. Lomnytska M., Dubrovska A., Hellman U., Volodko N., Souchelnytskyi S. Increased expression of cSHMT, Tbx3 and utrophin in plasma of ovarian and breast cancer patients. Int. J. Cancer. 2006;118:412–421.
    1. Longuespée R., Boyon C., Castellier C., Jacquet A., Desmons A., Kerdraon O., Vinatier D., Fournier I., Day R., Salzet M. The C-terminal fragment of the immunoproteasome PA28S (Reg alpha) as an early diagnosis and tumor-relapse biomarker: evidence from mass spectrometry profiling. Histochem. Cell Biol. 2012;138:141–154.
    1. Mise N., Savai R., Yu H., Schwarz J., Kaminski N., Eickelberg O. Zyxin is a transforming growth factor-β (TGF-β)/Smad3 target gene that regulates lung cancer cell motility via integrin α5β1. J. Biol. Chem. 2012;287:31393–31405.
    1. Mouilleron H., Delcourt V., Roucou X. Death of a dogma: eukaryotic mRNAs can code for more than one protein. Nucleic Acids Res. 2016;44:14–23.
    1. Quanico J., Franck J., Dauly C., Strupat K., Dupuy J., Day R., Salzet M., Fournier I., Wisztorski M. Development of liquid microjunction extraction strategy for improving protein identification from tissue sections. J. Proteome. 2013;79:200–218.
    1. Quanico J., Franck J., Gimeno J.P., Sabbagh R., Salzet M., Day R., Fournier I. Parafilm-assisted microdissection: a sampling method for mass spectrometry-based identification of differentially expressed prostate cancer protein biomarkers. Chem. Commun. (Camb.) 2014;51:4564–4567.
    1. Semba S., Han S.-Y., Qin H.R., McCorkell K.A., Iliopoulos D., Pekarsky Y., Druck T., Trapasso F., Croce C.M., Huebner K. Biological functions of mammalian Nit1, the counterpart of the invertebrate NitFhit Rosetta stone protein, a possible tumor suppressor. J. Biol. Chem. 2006;281:28244–28253.
    1. Sienel W., Varwerk C., Linder A., Kaiser D., Teschner M., Delire M., Stamatis G., Passlick B. Melanoma associated antigen (MAGE)-A3 expression in stages I and II non-small cell lung cancer: results of a multi-center study. Eur. J. Cardiothorac. Surg. 2004;25:131–134.
    1. Simpson K.D., Templeton D.J., Cross J.V. Macrophage migration inhibitory factor promotes tumor growth and metastasis by inducing myeloid-derived suppressor cells in the tumor microenvironment. J. Immunol. 2012;189:5533–5540.
    1. Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K.P., Kuhn M., Bork P., Jensen L.J., von Mering C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–D452.
    1. Tran J.C., Zamdborg L., Ahlf D.R., Lee J.E., Catherman A.D., Durbin K.R., Tipton J.D., Vellaichamy A., Kellie J.F., Li M., Wu C., Sweet S.M.M., Early B.P., Siuti N., LeDuc R.D., Compton P.D., Thomas P.M., Kelleher N.L. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature. 2011;480:254–258.
    1. Vanderperre B., Lucier J.-F., Bissonnette C., Motard J., Tremblay G., Vanderperre S., Wisztorski M., Salzet M., Boisvert F.-M., Roucou X. Direct detection of alternative open reading frames translation products in human significantly expands the proteome. PLoS One. 2013;8:e70698.
    1. Vizcaíno J.A., Csordas A., del-Toro N., Dianes J.A., Griss J., Lavidas I., Mayer G., Perez-Riverol Y., Reisinger F., Ternent T., Xu Q.-W., Wang R., Hermjakob H. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44 11033-11033.
    1. Waldemarson S., Krogh M., Alaiya A., Kirik U., Schedvins K., Auer G., Hansson K.M., Ossola R., Aebersold R., Lee H., Malmström J., James P. Protein expression changes in ovarian cancer during the transition from benign to malignant. J. Proteome Res. 2012;11:2876–2889.
    1. Wang L.N., Tong S.W., Hu H.D., Ye F., Li S.L., Ren H., Zhang D.Z., Xiang R., Yang Y.X. Quantitative proteome analysis of ovarian cancer tissues using a iTRAQ approach. J. Cell. Biochem. 2012;113:3762–3772.
    1. Wisztorski M., Desmons A., Quanico J., Fatou B., Gimeno J.P., Franck J., Salzet M., Fournier I. Spatially-resolved protein surface microsampling from tissue sections using liquid extraction surface analysis. Proteomics. 2016;16:1622–1632.
    1. Ye H., Mandal R., Catherman A., Thomas P.M., Kelleher N.L., Ikonomidou C., Li L. Top-down proteomics with mass spectrometry imaging: a pilot study towards discovery of biomarkers for neurodevelopmental disorders. PLoS One. 2014;9
    1. Yuryev A., Kotelnikova E., Daraselia N. Ariadne's ChemEffect and pathway studio knowledge base. Expert Opin. Drug Discovery. 2009;4:1307–1318.

Source: PubMed

3
Prenumerera