High mixed venous oxygen saturation levels do not exclude fluid responsiveness in critically ill septic patients

Dimitrios Velissaris, Charalampos Pierrakos, Sabino Scolletta, Daniel De Backer, Jean Louis Vincent, Dimitrios Velissaris, Charalampos Pierrakos, Sabino Scolletta, Daniel De Backer, Jean Louis Vincent

Abstract

Introduction: The aim of this study was to determine whether the degree of fluid responsiveness in critically ill septic patients is related to baseline mixed venous oxygen saturation (SvO2) levels. We also sought to define whether fluid responsiveness would be less likely in the presence of a high SvO2 (>70%).

Methods: This observational study was conducted in a 32-bed university hospital medicosurgical ICU. The hemodynamic response to a fluid challenge was evaluated in 65 critically ill patients with severe sepsis. Patients were divided into two groups (responders and nonresponders) according to their cardiac index (CI) response to the challenge (>10% or <10%).

Results: Of the 65 patients, 34 (52%) were fluid responders. Baseline SvO2, CI, heart rate (HR) and mean arterial pressure (MAP) were not statistically different between groups. The responders had lower pulmonary artery occlusion pressure (PAOP) and central venous pressure (CVP) at baseline than the nonresponders. After the fluid challenge, there were no differences between the two groups in MAP, CVP, PAOP or HR. There was no correlation between changes in CI or stroke volume index and baseline SvO2. Receiver operating characteristic analysis showed that SvO2 was not a predictor of fluid responsiveness.

Conclusions: The response of septic patients to a fluid challenge is independent of baseline SvO2. The presence of a high SvO2 does not necessarily exclude the need for further fluid administration.

Figures

Figure 1
Figure 1
Scatterplots of baseline CI (top) and SvO2 (bottom) values in responders (RS) and nonresponders (NON-RS). CI: confidence interval; SvO2: mixed venous oxygen saturation. Thin lines represent mean values, and thick lines the standard errors.
Figure 2
Figure 2
Relationship between baseline SvO2 levels and changes in cardiac index (%DCI) and stroke volume (%DSVI) in all patients (responders [RS] and nonresponders [NON-RS]). SvO2: mixed venous oxygen saturation.
Figure 3
Figure 3
ROC curves for baseline values of SvO2 (green line), CVP (blue line) and PAOP (red line). Diagonal segments are produced by ties. AUC were 0.51, 0.68 and 0.71 for SvO2, CVP and PAOP, respectively. CVP at a cutoff of 11 mmHg had a sensitivity of 67% and a specificity of 54% for predicting fluid responsiveness. PAOP at a cutoff of 13 mmHg had a sensitivity of 59% and a specificity of 65%. AUC: area under the curve; CVP: central venous pressure; PAOP: pulmonary artery occlusion pressure; ROC: receiver operating characteristic; SvO2: mixed venous oxygen saturation.

References

    1. Anning PB, Finney SJ, Singh S, Winlove CP, Evans TW. Fluids reverse the early lipopolysaccharide-induced albumin leakage in rodent mesenteric venules. Intensive Care Med. 2004;30:1944–1949. doi: 10.1007/s00134-004-2385-3.
    1. Haupt MT, Gilbert EM, Carlson RW. Fluid loading increases oxygen consumption in septic patients with lactic acidosis. Am Rev Respir Dis. 1985;131:912–916.
    1. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology. 1998;89:1313–1321. doi: 10.1097/00000542-199812000-00007.
    1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. doi: 10.1056/NEJMoa010307.
    1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;34:17–60. doi: 10.1007/s00134-007-0934-2.
    1. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–2008. doi: 10.1378/chest.121.6.2000.
    1. Vincent JL, Gerlach H. Fluid resuscitation in severe sepsis and septic shock: an evidence-based review. Crit Care Med. 2004;32:S451–S454. doi: 10.1097/01.CCM.0000142984.44321.A4.
    1. Vincent JL, Weil MH. Fluid challenge revisited. Crit Care Med. 2006;34:1333–1337. doi: 10.1097/01.CCM.0000214677.76535.A5.
    1. Birman H, Haq A, Hew E, Aberman A. Continuous monitoring of mixed venous oxygen saturation in hemodynamically unstable patients. Chest. 1984;86:753–756. doi: 10.1378/chest.86.5.753.
    1. Casserly B, Read R, Levy MM. Hemodynamic monitoring in sepsis. Crit Care Clin. 2009;25:803–823. doi: 10.1016/j.ccc.2009.08.006. ix.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003;29:530–538.
    1. Vincent JL, de Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Blecher S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on "sepsis-related problems" of the European Society of Intensive Care Medicine. Crit Care Med. 1998;26:1793–1800. doi: 10.1097/00003246-199811000-00016.
    1. Cariou A, Monchi M, Dhainaut JF. Continuous cardiac output and mixed venous oxygen saturation monitoring. J Crit Care. 1998;13:198–213. doi: 10.1016/S0883-9441(98)90006-5.
    1. Zanotti Cavazzoni SL, Dellinger RP. Hemodynamic optimization of sepsis-induced tissue hypoperfusion. Crit Care. 2006;10(Suppl 3):S2. doi: 10.1186/cc4829.
    1. Pinsky MR, Vincent JL. Let us use the pulmonary artery catheter correctly and only when we need it. Crit Care Med. 2005;33:1119–1122. doi: 10.1097/01.CCM.0000163238.64905.56.
    1. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Fumagalli R. A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med. 1995;333:1025–1032. doi: 10.1056/NEJM199510193331601.
    1. Heyland DK, Cook DJ, King D, Kernerman P, Brun-Buisson C. Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence. Crit Care Med. 1996;24:517–524. doi: 10.1097/00003246-199603000-00025.
    1. Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, Teboul JL. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35:64–68. doi: 10.1097/01.CCM.0000249851.94101.4F.
    1. Schneider AJ, Teule GJ, Groeneveld AB, Nauta J, Heidendal GA, Thijs LG. Biventricular performance during volume loading in patients with early septic shock, with emphasis on the right ventricle: a combined hemodynamic and radionuclide study. Am Heart J. 1988;116:103–112. doi: 10.1016/0002-8703(88)90256-6.
    1. Packman MI, Rackow EC. Optimum left heart filling pressure during fluid resuscitation of patients with hypovolemic and septic shock. Crit Care Med. 1983;11:165–169. doi: 10.1097/00003246-198303000-00003.
    1. Perel A. Bench-to-bedside review: the initial hemodynamic resuscitation of the septic patient according to Surviving Sepsis Campaign guidelines-does one size fit all? Crit Care. 2008;12:223. doi: 10.1186/cc6979.
    1. Bendjelid K, Romand JA. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med. 2003;29:352–360.
    1. Sevransky JE, Nour S, Susla GM, Needham DM, Hollenberg S, Pronovost P. Hemodynamic goals in randomized clinical trials in patients with sepsis: a systematic review of the literature. Crit Care. 2007;11:R67. doi: 10.1186/cc5948.

Source: PubMed

3
Prenumerera