Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype

L Campbell, A Potter, J Ignatius, V Dubowitz, K Davies, L Campbell, A Potter, J Ignatius, V Dubowitz, K Davies

Abstract

Autosomal recessive spinal muscular atrophy (SMA) is classified, on the basis of age at onset and severity, into three types: type I, severe; type II, intermediate; and type III, mild. The critical region in 5q13 contains an inverted repeat harboring several genes, including the survival motor neuron (SMN) gene, the neuronal apoptosis inhibitory protein (NAIP) gene, and the p44 gene, which encodes a transcription-factor subunit. Deletion of NAIP and p44 is observed more often in severe SMA, but there is no evidence that these genes play a role in the pathology of the disease. In > 90% of all SMA patients, exons 7 and 8 of the telomeric SMN gene (SMNtel) are not detectable, and this is also observed in some normal siblings and parents. Point mutations and gene conversions in SMNtel suggest that it plays a major role in the disease. To define a correlation between genotype and phenotype, we mapped deletions, using pulsed-field gel electrophoresis. Surprisingly, our data show that mutations in SMA types II and III, previously classed as deletions, are in fact due to gene-conversion events in which SMNtel is replaced by its centromeric counterpart, SMNcen. This results in a greater number of SMNcen copies in type II and type III patients compared with type I patients and enables a genotype/phenotype correlation to be made. We also demonstrate individual DNA-content variations of several hundred kilobases, even in a relatively isolated population from Finland. This explains why no consensus map of this region has been produced. This DNA variation may be due to a midisatellite repeat array, which would promote the observed high deletion and gene-conversion rate.

References

    1. Nucleic Acids Res. 1987 Mar 25;15(6):2537-47
    1. EMBO J. 1989 May;8(5):1393-402
    1. Nature. 1990 Apr 5;344(6266):540-1
    1. Nature. 1990 Apr 19;344(6268):767-8
    1. Nature. 1990 Jun 28;345(6278):823-5
    1. Ann Med. 1990 Apr;22(2):123-9
    1. Lancet. 1990 Aug 4;336(8710):271-3
    1. Neuromuscul Disord. 1991;1(4):307-8
    1. Neuromuscul Disord. 1992;2(5-6):423-8
    1. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6801-5
    1. Hum Mol Genet. 1993 Aug;2(8):1161-7
    1. Genomics. 1994 Nov 15;24(2):351-6
    1. Lancet. 1995 Apr 15;345(8955):985-6
    1. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3702-6
    1. Genomics. 1995 Apr 10;26(3):451-60
    1. Hum Mol Genet. 1995 Apr;4(4):631-4
    1. Am J Hum Genet. 1995 Oct;57(4):805-8
    1. Nat Genet. 1995 Nov;11(3):335-7
    1. Genomics. 1995 May 20;27(2):366-9
    1. Hum Mol Genet. 1995 Aug;4(8):1273-84
    1. Hum Mol Genet. 1995 Oct;4(10):1927-33
    1. J Med Genet. 1996 Apr;33(4):281-3
    1. EMBO J. 1996 Jul 15;15(14):3555-65
    1. J Med Genet. 1996 Jun;33(6):469-74
    1. Am J Hum Genet. 1996 Oct;59(4):834-8
    1. Hum Mol Genet. 1996 Feb;5(2):257-63
    1. Hum Mol Genet. 1996 Mar;5(3):359-65
    1. Am J Hum Genet. 1996 Nov;59(5):1057-65
    1. Hum Mol Genet. 1996 Nov;5(11):1727-32
    1. J Med Genet. 1996 Feb;33(2):93-6
    1. Ann Neurol. 1996 Nov;40(5):731-8
    1. Hum Mol Genet. 1996 Dec;5(12):1971-6
    1. Am J Hum Genet. 1997 Jan;60(1):72-9
    1. Hum Mol Genet. 1997 Jan;6(1):99-104
    1. J Med Genet. 1996 Dec;33(12):1019-21
    1. Ann Neurol. 1997 Feb;41(2):230-7
    1. Hum Mol Genet. 1997 Mar;6(3):497-500
    1. J Med Genet. 1993 Oct;30(10):857-65
    1. EMBO J. 1994 May 15;13(10):2393-8
    1. Science. 1994 Jun 3;264(5164):1474-7
    1. Am J Hum Genet. 1994 Dec;55(6):1209-17
    1. Am J Hum Genet. 1994 Dec;55(6):1218-29
    1. Cell. 1995 Jan 13;80(1):155-65
    1. Cell. 1995 Jan 13;80(1):167-78
    1. Mamm Genome. 1994 Dec;5(12):791-6

Source: PubMed

3
Prenumerera