Neuroprotective effect of therapeutic hypothermia versus standard care alone after convulsive status epilepticus: protocol of the multicentre randomised controlled trial HYBERNATUS

Stephane Legriel, Fernando Pico, Yves-Roger Tran-Dinh, Virginie Lemiale, Jean-Pierre Bedos, Matthieu Resche-Rigon, Alain Cariou, Stephane Legriel, Fernando Pico, Yves-Roger Tran-Dinh, Virginie Lemiale, Jean-Pierre Bedos, Matthieu Resche-Rigon, Alain Cariou

Abstract

Convulsive status epilepticus (CSE) is a major medical emergency associated with a 50 % morbidity rate. CSE guidelines have recommended prompt management for many years, but there is no evidence to date that they have significantly improved practices or outcomes. Developing neuroprotective strategies for use after CSE holds promise for diminishing morbidity and mortality rates. Hypothermia has been shown to afford neuroprotection in various health conditions. We therefore designed a trial to determine whether 90-day outcomes in mechanically ventilated patients with CSE requiring management in the intensive care unit (ICU) are improved by early therapeutic hypothermia (32-34 °C) for 24 h with propofol sedation. We are conducting a multicentre, open-label, parallel-group, randomised, controlled trial (HYBERNATUS) of potential neuroprotective effects of therapeutic hypothermia and routine propofol sedation started within 8 h after CSE onset in ICU patients requiring mechanical ventilation. Included patients are allocated to receive therapeutic hypothermia (32-34 °C) plus standard care or standard care alone. We plan to enrol 270 patients in 11 ICUs. An interim analysis is scheduled after the inclusion of 135 patients. The main study objective is to evaluate the effectiveness of therapeutic hypothermia (32-34 °C) for 24 h in diminishing 90-day morbidity and mortality (defined as a Glasgow Outcome Scale score <5). The HYBERNATUS trial is expected to a decreased proportion of patients with a Glasgow Outcome Scale score lower than 5 after CSE requiring ICU admission and mechanical ventilation. Trial registration Clinicaltrials.gov identifier NCT01359332 (registered on 23 May 2011).

Keywords: Intensive care unit; Outcome; Randomised controlled trial; Status epilepticus; Therapeutic hypothermia.

Figures

Fig. 1
Fig. 1
HYBERNATUS trial diagram. ICU intensive care unit. EEG electroencephalogram
Fig. 2
Fig. 2
Eligibility criteria, inclusion, randomisation, and treatment implementation modalities in each arm of the trial

References

    1. Lowenstein DHAB. Status epilepticus. N Engl J Med. 1998;1998(338):970–976. doi: 10.1056/NEJM199804023381407.
    1. Legriel S, Mourvillier B, Bele N, Amaro J, Fouet P, Manet P, et al. Outcomes in 140 critically ill patients with status epilepticus. Intensive Care Med. 2008;34:476–480. doi: 10.1007/s00134-007-0915-5.
    1. Claassen J, Lokin JK, Fitzsimmons BF, Mendelsohn FA, Mayer SA. Predictors of functional disability and mortality after status epilepticus. Neurology. 2002;8(58):139–142. doi: 10.1212/WNL.58.1.139.
    1. Legriel S, Azoulay E, Resche-Rigon M, Lemiale V, Mourvillier B, Kouatchet A, et al. Functional outcome after convulsive status epilepticus. Crit Care Med. 2010;38:2295–2303. doi: 10.1097/CCM.0b013e3181f859a6.
    1. Brophy GM, Bell R, Claassen J, Alldredge B, Bleck TP, Glauser T, et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care. 2012;17:3–23. doi: 10.1007/s12028-012-9695-z.
    1. Rossetti AO, Hurwitz S, Logroscino G, Bromfield EB. Prognosis of status epilepticus: role of aetiology, age, and consciousness impairment at presentation. J Neurol Neurosurg Psychiatry. 2006;77:611–615. doi: 10.1136/jnnp.2005.080887.
    1. Liu Z, Gatt A, Mikati M, Holmes GL. Effect of temperature on kainic acid-induced seizures. Brain Res. 1993;17(631):51–58. doi: 10.1016/0006-8993(93)91185-U.
    1. Jiang W, Duong TM, de Lanerolle NC. The neuropathology of hyperthermic seizures in the rat. Epilepsia. 1999;40:5–19. doi: 10.1111/j.1528-1157.1999.tb01982.x.
    1. Lundgren J, Smith ML, Blennow G, Siesjo BK. Hyperthermia aggravates and hypothermia ameliorates epileptic brain damage. Exp Brain Res. 1994;99:43–55. doi: 10.1007/BF00241411.
    1. Wang Y, Liu PP, Li LY, Zhang HM, Li T. Hypothermia reduces brain edema, spontaneous recurrent seizure attack, and learning memory deficits in the kainic acid treated rats. CNS Neurosci Ther. 2011;17:271–280. doi: 10.1111/j.1755-5949.2010.00168.x.
    1. Maeda T, Hashizume K, Tanaka T. Effect of hypothermia on kainic acid-induced limbic seizures: an electroencephalographic and 14C-deoxyglucose autoradiographic study. Brain Res. 1999;13(818):228–235. doi: 10.1016/S0006-8993(98)01269-4.
    1. Schmitt FC, Buchheim K, Meierkord H, Holtkamp M. Anticonvulsant properties of hypothermia in experimental status epilepticus. Neurobiol Dis. 2006;23:689–696. doi: 10.1016/j.nbd.2006.05.008.
    1. Kowski AB, Kanaan H, Schmitt FC, Holtkamp M. Deep hypothermia terminates status epilepticus—an experimental study. Brain Res. 2012;29(1446):119–126. doi: 10.1016/j.brainres.2012.01.022.
    1. Corry JJ, Dhar R, Murphy T, Diringer MN. Hypothermia for refractory status epilepticus. Neurocrit Care. 2008;9:189–197. doi: 10.1007/s12028-008-9092-9.
    1. Ren GP, Su YY, Tian F, Zhang YZ, Gao DQ, Liu G, et al. Early hypothermia for refractory status epilepticus. Chin Med J. 2015;20(128):1679–1682.
    1. Bennett AE, Hoesch RE, DeWitt LD, Afra P, Ansari SA. Therapeutic hypothermia for status epilepticus: a report, historical perspective, and review. Clin Neurol Neurosurg. 2014;126:103–109. doi: 10.1016/j.clineuro.2014.08.032.
    1. Cereda C, Berger MM, Rossetti AO. Bowel ischemia: a rare complication of thiopental treatment for status epilepticus. Neurocrit Care. 2009;10:355–358. doi: 10.1007/s12028-008-9168-6.
    1. Blanco M, Campos F, Rodriguez-Yanez M, Arias S, Fernandez-Ferro J, Gomez-Sanchez JC, et al. Neuroprotection or increased brain damage mediated by temperature in stroke is time dependent. PLoS ONE. 2012;7:e30700. doi: 10.1371/journal.pone.0030700.
    1. Kollmar R, Juettler E, Huttner HB, Dorfler A, Staykov D, Kallmuenzer B, et al. Cooling in intracerebral hemorrhage (CINCH) trial: protocol of a randomized German–Austrian clinical trial. Int J Stroke. 2012;7:168–172. doi: 10.1111/j.1747-4949.2011.00707.x.
    1. Kollmar R, Staykov D, Dorfler A, Schellinger PD, Schwab S, Bardutzky J. Hypothermia reduces perihemorrhagic edema after intracerebral hemorrhage. Stroke. 2010;41:1684–1689. doi: 10.1161/STROKEAHA.110.587758.
    1. Steiner T, Bosel J. Options to restrict hematoma expansion after spontaneous intracerebral hemorrhage. Stroke. 2010;41:402–409. doi: 10.1161/STROKEAHA.109.552919.
    1. Rincon F, Lyden P, Mayer SA. Relationship between temperature, hematoma growth, and functional outcome after intracerebral hemorrhage. Neurocrit Care. 2013;18:45–53. doi: 10.1007/s12028-012-9779-9.
    1. Seule MA, Muroi C, Mink S, Yonekawa Y, Keller E. Therapeutic hypothermia in patients with aneurysmal subarachnoid hemorrhage, refractory intracranial hypertension, or cerebral vasospasm. Neurosurgery. 2009;64:86–92. doi: 10.1227/01.NEU.0000336312.32773.A0.
    1. Schubert GA, Poli S, Mendelowitsch A, Schilling L, Thome C. Hypothermia reduces early hypoperfusion and metabolic alterations during the acute phase of massive subarachnoid hemorrhage: a laser-Doppler-flowmetry and microdialysis study in rats. J Neurotrauma. 2008;25:539–548. doi: 10.1089/neu.2007.0500.
    1. Todd MM, Hindman BJ, Clarke WR, Torner JC, Weeks JB, Bayman EO, et al. Perioperative fever and outcome in surgical patients with aneurysmal subarachnoid hemorrhage. Neurosurgery. 2009;64:897–908. doi: 10.1227/01.NEU.0000341903.11527.2F.
    1. Andrews PJ, Sinclair HL, Rodriguez A, Harris BA, Battison CG, Rhodes JK, et al. Hypothermia for Intracranial Hypertension after Traumatic Brain Injury. N Engl J Med. 2015;17(373):2403–2412. doi: 10.1056/NEJMoa1507581.
    1. Polderman KH. Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet. 2008;7(371):1955–1969. doi: 10.1016/S0140-6736(08)60837-5.
    1. Flynn LM, Rhodes J, Andrews PJ. Therapeutic hypothermia reduces intracranial pressure and partial brain oxygen tension in patients with severe traumatic brain injury: preliminary data from the Eurotherm3235 trial. Ther Hypothermia Temp Manag. 2015;5:143–151. doi: 10.1089/ther.2015.0002.
    1. Kochanek PM, Safar PJ. Therapeutic hypothermia for severe traumatic brain injury. JAMA. 2003;11(289):3007–3009. doi: 10.1001/jama.289.22.3007.
    1. Sandestig A, Romner B, Grande PO. Therapeutic hypothermia in children and adults with severe traumatic brain injury. Ther Hypothermia Temp Manag. 2014;1(4):10–20. doi: 10.1089/ther.2013.0024.
    1. Rossetti AO. What is the value of hypothermia in acute neurologic diseases and status epilepticus? Epilepsia. 2011;52(Suppl 8):64–66. doi: 10.1111/j.1528-1167.2011.03241.x.
    1. Rossetti AO, Lowenstein DH. Management of refractory status epilepticus in adults: still more questions than answers. Lancet Neurol. 2011;10:922–930. doi: 10.1016/S1474-4422(11)70187-9.
    1. Outin H, Blanc T, Vinatier I. le groupe de [Emergency and intensive care unit management of status epilepticus in adult patients and children (new-born excluded). Societe de reanimation de langue francaise experts recommendations] Rev Neurol. 2009;165:297–305. doi: 10.1016/j.neurol.2009.01.048.
    1. Legriel S, Bedos J, Azoulay E. Managing critically III patients with status epilepticus. New York: Springer; 2008. pp. 822–836.
    1. Legriel S, Resche-Rigon M, Cariou A. Dual anticonvulsant and neuroprotective effects of therapeutic hypothermia after status epilepticus. Clin Neurol Neurosurg. 2015;131:87–88. doi: 10.1016/j.clineuro.2015.01.013.
    1. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;21(346):557–563. doi: 10.1056/NEJMoa003289.
    1. Hypothermia after Cardiac Arrest Study Group Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;21(346):549–556.
    1. Vasile B, Rasulo F, Candiani A, Latronico N. The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intensive Care Med. 2003;29:1417–1425. doi: 10.1007/s00134-003-1905-x.
    1. Jennett B, Teasdale G, Braakman R, Minderhoud J, Knill-Jones R. Predicting outcome in individual patients after severe head injury. Lancet. 1976;15(1):1031–1034. doi: 10.1016/S0140-6736(76)92215-7.
    1. Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2008;15(358):2127–2137. doi: 10.1056/NEJMoa0707534.
    1. van de Beek D, de Gans J, Spanjaard L, Weisfelt M, Reitsma JB, Vermeulen M. Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med. 2004;28(351):1849–1859. doi: 10.1056/NEJMoa040845.
    1. Wilson JT, Pettigrew LE, Teasdale GM. Structured interviews for the Glasgow Outcome Scale and the extended Glasgow Outcome Scale: guidelines for their use. J Neurotrauma. 1998;15:573–585. doi: 10.1089/neu.1998.15.573.
    1. Mayer SA, Claassen J, Lokin J, Mendelsohn F, Dennis LJ, Fitzsimmons BF. Refractory status epilepticus: frequency, risk factors, and impact on outcome. Arch Neurol. 2002;59:205–210. doi: 10.1001/archneur.59.2.205.
    1. Pettigrew LE, Wilson JT, Teasdale GM. Reliability of ratings on the Glasgow Outcome Scales from in-person and telephone structured interviews. J Head Trauma Rehabil. 2003;18:252–258. doi: 10.1097/00001199-200305000-00003.
    1. Mourvillier B, Tubach F, van de Beek D, Garot D, Pichon N, Georges H, et al. Induced hypothermia in severe bacterial meningitis: a randomized clinical trial. JAMA. 2013;27(310):2174–2183. doi: 10.1001/jama.2013.280506.

Source: PubMed

3
Prenumerera