Lipid-Based Nutrient Supplementation Increases High-Density Lipoprotein (HDL) Cholesterol Efflux Capacity and Is Associated with Changes in the HDL Glycoproteome in Children

Brian V Hong, Chenghao Zhu, Maurice Wong, Romina Sacchi, Christopher H Rhodes, Jea Woo Kang, Charles D Arnold, Seth Adu-Afarwuah, Anna Lartey, Brietta M Oaks, Carlito B Lebrilla, Kathryn G Dewey, Angela M Zivkovic, Brian V Hong, Chenghao Zhu, Maurice Wong, Romina Sacchi, Christopher H Rhodes, Jea Woo Kang, Charles D Arnold, Seth Adu-Afarwuah, Anna Lartey, Brietta M Oaks, Carlito B Lebrilla, Kathryn G Dewey, Angela M Zivkovic

Abstract

Prenatal plus postnatal small-quantity lipid-based nutrient supplements (SQ-LNS) improved child growth at 18 months in the International Lipid-Based Nutrient Supplements DYAD trial in Ghana. In this secondary outcome analysis, we determined whether SQ-LNS versus prenatal iron and folic acid (IFA) supplementation improves the cholesterol efflux capacity (CEC) of high-density lipoprotein (HDL) particles and alters their lipidomic, proteomic, or glycoproteomic composition in a subset of 80 children at 18 months of age. HDL CEC was higher among children in the SQ-LNS versus IFA group (20.9 ± 4.1 vs 19.4 ± 3.3%; one-tailed p = 0.038). There were no differences in HDL lipidomic or proteomic composition between groups. Twelve glycopeptides out of the 163 analyzed were significantly altered by SQ-LNS, but none of the group differences remained significant after correction for multiple testing. Exploratory analysis showed that 6 out of the 33 HDL-associated proteins monitored differed in glycopeptide enrichment between intervention groups, and 6 out of the 163 glycopeptides were correlated with CEC. We conclude that prenatal plus postnatal SQ-LNS may modify HDL protein glycoprofiles and improve the CEC of HDL particles in children, which may have implications for subsequent child health outcomes. This trial was registered at clinicaltrials.gov as NCT00970866.

Conflict of interest statement

The authors declare no competing financial interest.

© 2021 The Authors. Published by American Chemical Society.

Figures

Figure 1
Figure 1
Volcano plots of the intervention effects on HDL lipid species (A) and HDL glycopeptides (B). The log fold changes of all measured variables are displayed on the x-axis and the −log(p-value) on the y-axis. Variables with p-value <0.05 were labeled. p-values were not corrected for multiple testing.
Figure 2
Figure 2
Enrichment analysis of glycopeptides in the IFA and SQ-LNS group. Out of the 33 HDL-associated proteins monitored, 21 contained glycopeptides. Six glycopeptides from a subset of the 21 proteins differed significantly in enrichment between intervention groups. Enrichment is characterized as the total amount of glycopeptides of a particular protein across all glycosylation sites as a measure of the degree of glycosylation of that protein. Number of glycopeptides of APOC3 (apolipoprotein C-III), CLUS (clusterin), PON1 (paraoxonase 1), AACT, FETUA, and A1AT (alpha-1-antitrypsin) that are lower (left panel) or higher (right panel) in children in the SQ-LNS compared to the IFA intervention group. SQ-LNS, small-quantity lipid-based nutrient supplements; IFA, iron and folic acid; HDL, high-density lipoproteins.
Figure 3
Figure 3
A: Dotmap of the SQ-LNS effects on HDL glycopeptides and glycopeptide correlation with CEC. Glycopeptides that were significantly different (p ≤ 0.05) between intervention groups are shown. The darkness of the background indicates the p-value. The dot size represents glycopeptide log fold changes in the abundance analysis. B–G: Scatterplot of all glycopeptides associated with HDL CEC, including glycopeptides A1AT_70_5402 (B), FETUA_156_6513 (C), PON1_324_6503 (D), APOD_98_5402 (E), APOD_65_6503 (F), and A1AT_70_5412 (G). CEC, cholesterol efflux capacity; HDL, high-density lipoprotein; SQ-LNS, small-quantity lipid-based nutrient supplements; A1AT, alpha-1-antitrypsin; FETUA, alpha-2-HS-glycoprotein; PON1, serum paraoxonase/arylesterase 1; APOD, apolipoprotein D.

References

    1. Bailey R. L.; West K. P. Jr.; Black R. E. The Epidemiology of Global Micronutrient Deficiencies. Ann. Nutr. Metab. 2015, 66, 22–33. 10.1159/000371618.
    1. Adair L. S.; Fall C. H. D.; Osmond C.; Stein A. D.; Martorell R.; Ramirez-Zea M.; Sachdev H. S.; Dahly D. L.; Bas I.; Norris S. A.; Micklesfield L.; Hallal P.; Victora C. G. Associations of Linear Growth and Relative Weight Gain during Early Life with Adult Health and Human Capital in Countries of Low and Middle Income: Findings from Five Birth Cohort Studies. Lancet 2013, 382, 525–534. 10.1016/S0140-6736(13)60103-8.
    1. Michaelsen K. F.; Dewey K. G.; Perez-Exposito A. B.; Nurhasan M.; Lauritzen L.; Roos N. Food Sources and Intake of N-6 and n-3 Fatty Acids in Low-Income Countries with Emphasis on Infants, Young Children (6-24 Months), and Pregnant and Lactating Women. Matern. Child Nutr. 2011, 7, 124–140. 10.1111/j.1740-8709.2011.00302.x.
    1. Arimond M.; Zeilani M.; Jungjohann S.; Brown K. H.; Ashorn P.; Allen L. H.; Dewey K. G. Considerations in Developing Lipid-Based Nutrient Supplements for Prevention of Undernutrition: Experience from the International Lipid-Based Nutrient Supplements (ILiNS) Project. Matern. Child Nutr. 2015, 11, 31–61. 10.1111/mcn.12049.
    1. Adu-Afarwuah S.; Lartey A.; Okronipa H.; Ashorn P.; Zeilani M.; Peerson J. M.; Arimond M.; Vosti S.; Dewey K. G. Lipid-Based Nutrient Supplement Increases the Birth Size of Infants of Primiparous Women in Ghana. Am. J. Clin. Nutr. 2015, 101, 835–846. 10.3945/ajcn.114.091546.
    1. Adu-Afarwuah S.; Lartey A.; Okronipa H.; Ashorn P.; Peerson J. M.; Arimond M.; Ashorn U.; Zeilani M.; Vosti S.; Dewey K. G. Small-Quantity, Lipid-Based Nutrient Supplements Provided to Women during Pregnancy and 6 Mo Postpartum and to Their Infants from 6 Mo of Age Increase the Mean Attained Length of 18-Mo-Old Children in Semi-Urban Ghana: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2016, 104, 797–808. 10.3945/ajcn.116.134692.
    1. Assmann G.; Gotto A. M. HDL Cholesterol and Protective Factors in Atherosclerosis. Circulation 2004, 109, III8.10.1161/01.CIR.0000131512.50667.46.
    1. Barter P.; Gotto A. M.; LaRosa J. C.; Maroni J.; Szarek M.; Grundy S. M.; Kastelein J. J. P.; Bittner V.; Fruchart J. C. HDL Cholesterol, Very Low Levels of LDL Cholesterol, and Cardiovascular Events. N. Engl. J. Med. 2007, 357, 1301–1310. 10.1056/NEJMoa064278.
    1. Luo J.; Yang H.; Song B.-L. Mechanisms and Regulation of Cholesterol Homeostasis. Nat. Rev. Mol. Cell Biol. 2020, 21, 225–245. 10.1038/s41580-019-0190-7.
    1. Mudd L. M.; Holzman C. B.; Evans R. W. Maternal Mid-Pregnancy Lipids and Birthweight. Acta Obstet. Gynecol. Scand. 2015, 94, 852–860. 10.1111/aogs.12665.
    1. Oaks B. M.; Stewart C. P.; Laugero K. D.; Adu-Afarwuah S.; Lartey A.; Vosti S. A.; Ashorn P.; Dewey K. G. Maternal Plasma Cholesterol and Duration of Pregnancy: A Prospective Cohort Study in Ghana. Matern. Child Nutr. 2017, 13, e1241810.1111/mcn.12418.
    1. Scoble J. A.; Smilowitz J. T.; Argov-Argaman N.; German J. B.; Underwood M. A. Plasma Lipoprotein Particle Subclasses in Preterm Infants. Am. J. Perinatol. 2018, 35, 369–379. 10.1055/s-0037-1607347.
    1. Bonacina F.; Pirillo A.; Catapano A. L.; Norata G. D. Cholesterol Membrane Content Has a Ubiquitous Evolutionary Function in Immune Cell Activation: The Role of HDL. Curr. Opin. Lipidol. 2019, 30, 462–469. 10.1097/MOL.0000000000000642.
    1. van der Vorst E. P. C.; Theodorou K.; Wu Y.; Hoeksema M. A.; Goossens P.; Bursill C. A.; Aliyev T.; Huitema L. F. A.; Tas S. W.; Wolfs I. M. J.; Kuijpers M. J. E.; Gijbels M. J.; Schalkwijk C. G.; Koonen D. P. Y.; Abdollahi-Roodsaz S.; McDaniels K.; Wang C.-C.; Leitges M.; Lawrence T.; Plat J.; Van Eck M.; Rye K.-A.; Touqui L.; de Winther M. P. J.; Biessen E. A. L.; Donners M. M. P. C. High-Density Lipoproteins Exert Pro-Inflammatory Effects on Macrophages via Passive Cholesterol Depletion and PKC-NF-ΚB/STAT1-IRF1 Signaling. Cell Metab. 2017, 25, 197–207. 10.1016/j.cmet.2016.10.013.
    1. Rached F.; Lhomme M.; Camont L.; Gomes F.; Dauteuille C.; Robillard P.; Santos R. D.; Lesnik P.; Serrano C. V. J.; John Chapman M.; Kontush A. Defective Functionality of Small, Dense HDL3 Subpopulations in ST Segment Elevation Myocardial Infarction: Relevance of Enrichment in Lysophosphatidylcholine, Phosphatidic Acid and Serum Amyloid A. Biochim. Biophys. Acta 2015, 1851, 1254–1261. 10.1016/j.bbalip.2015.05.007.
    1. Agarwala A. P.; Rodrigues A.; Risman M.; McCoy M.; Trindade K.; Qu L.; Cuchel M.; Billheimer J.; Rader D. J. High-Density Lipoprotein (HDL) Phospholipid Content and Cholesterol Efflux Capacity Are Reduced in Patients With Very High HDL Cholesterol and Coronary Disease. Arterioscler., Thromb., Vasc. Biol. 2015, 35, 1515–1519. 10.1161/ATVBAHA.115.305504.
    1. Vaisar T.; Tang C.; Babenko I.; Hutchins P.; Wimberger J.; Suffredini A. F.; Heinecke J. W. Inflammatory Remodeling of the HDL Proteome Impairs Cholesterol Efflux Capacity. J. Lipid Res. 2015, 56, 1519–1530. 10.1194/jlr.M059089.
    1. Zhu C.; Sawrey-Kubicek L.; Beals E.; Hughes R. L.; Rhodes C. H.; Sacchi R.; Zivkovic A. M. The HDL Lipidome Is Widely Remodeled by Fast Food versus Mediterranean Diet in 4 Days. Metabolomics 2019, 15, 114.10.1007/s11306-019-1579-1.
    1. Richard C.; Couture P.; Desroches S.; Nehmé B.; Bourassa S.; Droit A.; Lamarche B. Effect of an Isoenergetic Traditional Mediterranean Diet on the High-Density Lipoprotein Proteome in Men with the Metabolic Syndrome. J. Nutr. Nutr. 2014, 7, 48–60. 10.1159/000363137.
    1. Krishnan S.; Shimoda M.; Sacchi R.; Kailemia M. J.; Luxardi G.; Kaysen G. A.; Parikh A. N.; Ngassam V. N.; Johansen K.; Chertow G. M.; Grimes B.; Smilowitz J. T.; Maverakis E.; Lebrilla C. B.; Zivkovic A. M. HDL Glycoprotein Composition and Site-Specific Glycosylation Differentiates Between Clinical Groups and Affects IL-6 Secretion in Lipopolysaccharide-Stimulated Monocytes. Sci. Rep. 2017, 7, 43728.10.1038/srep43728.
    1. Zhu C.; Wong M.; Li Q.; Sawrey-Kubicek L.; Beals E.; Rhodes C. H.; Sacchi R.; Lebrilla C. B.; Zivkovic A. M. Site-Specific Glycoprofiles of HDL-Associated ApoE Are Correlated with HDL Functional Capacity and Unaffected by Short-Term Diet. J. Proteome Res. 2019, 18, 3977–3984. 10.1021/acs.jproteome.9b00450.
    1. Zhang J.; Kris-Etherton P. M.; Thompson J. T.; Hannon D. B.; Gillies P. J.; vanden Heuvel J. P. Alpha-Linolenic Acid Increases Cholesterol Efflux in Macrophage-Derived Foam Cells by Decreasing Stearoyl CoA Desaturase 1 Expression: Evidence for a Farnesoid-X-Receptor Mechanism of Action. J. Nutr. Biochem. 2012, 23, 400–409. 10.1016/j.jnutbio.2011.01.004.
    1. Khalil H.; Murrin C.; O’Reilly M.; Viljoen K.; Segurado R.; O’Brien J.; Somerville R.; McGillicuddy F.; Kelleher C. C. Total HDL Cholesterol Efflux Capacity in Healthy Children - Associations with Adiposity and Dietary Intakes of Mother and Child. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 70–77. 10.1016/j.numecd.2016.10.002.
    1. Mogarekar M. R.; Dhabe M. G.; Palmate M. M. PON1 Arylesterase Activity, HDL Functionality and Their Correlation in Malnourished Children. J. Pediatr. Endocrinol. Metab. 2019, 32, 321–326. 10.1515/jpem-2018-0327.
    1. Soran H.; Hama S.; Yadav R.; Durrington P. N. HDL Functionality. Curr. Opin. Lipidol. 2012, 23, 353–366. 10.1097/MOL.0b013e328355ca25.
    1. Westerterp M.; Gautier E. L.; Ganda A.; Molusky M. M.; Wang W.; Fotakis P.; Wang N.; Randolph G. J.; D’Agati V. D.; Yvan-Charvet L.; Tall A. R. Cholesterol Accumulation in Dendritic Cells Links the Inflammasome to Acquired Immunity. Cell Metab. 2017, 25, 1294–1304.e6. 10.1016/j.cmet.2017.04.005.
    1. Tall A. R.; Yvan-Charvet L.; Terasaka N.; Pagler T.; Wang N. HDL, ABC Transporters, and Cholesterol Efflux: Implications for the Treatment of Atherosclerosis. Cell Metab. 2008, 7, 365–375. 10.1016/j.cmet.2008.03.001.
    1. Andreas N. J.; Kampmann B.; Mehring Le-Doare K. Human Breast Milk: A Review on Its Composition and Bioactivity. Early Hum. Dev. 2015, 91, 629–635. 10.1016/j.earlhumdev.2015.08.013.
    1. Oaks B. M.; Young R. R.; Adu-Afarwuah S.; Ashorn U.; Jackson K. H.; Lartey A.; Maleta K.; Okronipa H.; Sadalaki J.; Baldiviez L. M.; Shahab-Ferdows S.; Ashorn P.; Dewey K. G. Effects of a Lipid-Based Nutrient Supplement during Pregnancy and Lactation on Maternal Plasma Fatty Acid Status and Lipid Profile: Results of Two Randomized Controlled Trials. Prostaglandins Leukot. Essent. Fatty Acids 2017, 117, 28–35. 10.1016/j.plefa.2017.01.007.
    1. Kailemia M. J.; Wei W.; Nguyen K.; Beals E.; Sawrey-Kubicek L.; Rhodes C.; Zhu C.; Sacchi R.; Zivkovic A. M.; Lebrilla C. B. Targeted Measurements of O- and N-Glycopeptides Show That Proteins in High Density Lipoprotein Particles Are Enriched with Specific Glycosylation Compared to Plasma. J. Proteome Res. 2018, 17, 834–845. 10.1021/acs.jproteome.7b00604.
    1. de Serres F.; Blanco I. Role of Alpha-1 Antitrypsin in Human Health and Disease. J. Intern. Med. 2014, 276, 311–335. 10.1111/joim.12239.
    1. Baker C.; Belbin O.; Kalsheker N.; Morgan K. SERPINA3 (Aka Alpha-1-Antichymotrypsin). Front. Biosci. 2007, 12, 2821–2835. 10.2741/2275.
    1. Trepanowski J. F.; Mey J.; Varady K. A. Fetuin-A: A Novel Link between Obesity and Related Complications. Int. J. Obes. 2015, 39, 734–741. 10.1038/ijo.2014.203.
    1. Mukhopadhyay S.; Mondal S. A.; Kumar M.; Dutta D. Proinflammatory and Antiinflammatory Attributes of Fetuin-a: A Novel Hepatokine Modulating Cardiovascular and Glycemic Outcomes in Metabolic Syndrome. Endocr. Pract. 2014, 20, 1345–1351. 10.4158/EP14421.RA.
    1. Müller-Eberhard H. J. Molecular Organization and Function of the Complement System. Annu. Rev. Biochem. 1988, 57, 321–347. 10.1146/annurev.bi.57.070188.001541.
    1. Posod A.; Pechlaner R.; Yin X.; Burnap S. A.; Kiechl S. J.; Willeit J.; Witztum J. L.; Mayr M.; Kiechl S.; Kiechl-Kohlendorfer U. Apolipoprotein Profiles in Very Preterm and Term-Born Preschool Children. J. Am. Heart Assoc. 2019, 8, e01119910.1161/JAHA.118.011199.
    1. Jones S. E.; Jomary C. Clusterin. Int. J. Biochem. Cell Biol. 2002, 34, 427–431. 10.1016/S1357-2725(01)00155-8.
    1. Ferré N.; Feliu A.; García-Heredia A.; Marsillach J.; París N.; Zaragoza-Jordana M.; Mackness B.; Mackness M.; Escribano J.; Closa-Monasterolo R.; Joven J.; Camps J. Impaired Paraoxonase-1 Status in Obese Children. Relationships with Insulin Resistance and Metabolic Syndrome. Clin. Biochem. 2013, 46, 1830–1836. 10.1016/j.clinbiochem.2013.08.020.
    1. Krzystek-Korpacka M.; Patryn E.; Hotowy K.; Czapińska E.; Majda J.; Kustrzeba-Wójcicka I.; Noczyńska A.; Gamian A. Paraoxonase (PON)-1 Activity in Overweight and Obese Children and Adolescents: Association with Obesity-Related Inflammation and Oxidative Stress. Adv. Clin. Exp. Med. 2013, 22, 229–236.
    1. Semba R. D.; Trehan I.; Li X.; Salem N.; Moaddel R.; Ordiz M. I.; Maleta K. M.; Kraemer K.; Manary M. J. Low Serum ω-3 and ω-6 Polyunsaturated Fatty Acids and Other Metabolites Are Associated with Poor Linear Growth in Young Children from Rural Malawi. Am. J. Clin. Nutr. 2017, 106, 1490–1499. 10.3945/ajcn.117.164384.
    1. Ashorn P.; Alho L.; Ashorn U.; Cheung Y. B.; Dewey K. G.; Gondwe A.; Harjunmaa U.; Lartey A.; Phiri N.; Phiri T. E.; Vosti S. A.; Zeilani M.; Maleta K. Supplementation of Maternal Diets during Pregnancy and for 6 Months Postpartum and Infant Diets Thereafter with Small-Quantity Lipid-Based Nutrient Supplements Does Not Promote Child Growth by 18 Months of Age in Rural Malawi: A Randomized Controlled Trial. J. Nutr. 2015, 145, 1345–1353. 10.3945/jn.114.207225.
    1. Adu-Afarwuah S.; Young R. T.; Lartey A.; Okronipa H.; Ashorn P.; Ashorn U.; Oaks B. M.; Arimond M.; Dewey K. G. Maternal and Infant Supplementation with Small-Quantity Lipid-Based Nutrient Supplements Increases Infants’ Iron Status at 18 Months of Age in a Semiurban Setting in Ghana: A Secondary Outcome Analysis of the ILiNS-DYAD Randomized Controlled Trial. J. Nutr. 2019, 149, 149–158. 10.1093/jn/nxy225.
    1. Kumordzie S. M.; Adu-Afarwuah S.; Arimond M.; Young R. R.; Adom T.; Boatin R.; Ocansey M. E.; Okronipa H.; Prado E. L.; Oaks B. M.; Dewey K. G. Maternal and Infant Lipid-Based Nutritional Supplementation Increases Height of Ghanaian Children at 4-6 Years Only If the Mother Was Not Overweight Before Conception. J. Nutr. 2019, 149, 847–855. 10.1093/jn/nxz005.
    1. Holzer M.; Kern S.; Birner-Grünberger R.; Curcic S.; Heinemann A.; Marsche G. Refined Purification Strategy for Reliable Proteomic Profiling of HDL(2/3): Impact on Proteomic Complexity. Sci. Rep. 2016, 6, 38533–38533. 10.1038/srep38533.
    1. Zheng J. J.; Agus J. K.; Hong B. V.; Tang X.; Rhodes C. H.; Houts H. E.; Zhu C.; Kang J. W.; Wong M.; Xie Y.; Lebrilla C. B.; Mallick E.; Witwer K. W.; Zivkovic A. M. Isolation of HDL by Sequential Flotation Ultracentrifugation Followed by Size Exclusion Chromatography Reveals Size-Based Enrichment of HDL-Associated Proteins. Sci. Rep. 2021, 11, 16086.10.1038/s41598-021-95451-3.
    1. Li Q.; Kailemia M. J.; Merleev A. A.; Xu G.; Serie D.; Danan L. M.; Haj F. G.; Maverakis E.; Lebrilla C. B. Site-Specific Glycosylation Quantitation of 50 Serum Glycoproteins Enhanced by Predictive Glycopeptidomics for Improved Disease Biomarker Discovery. Anal. Chem. 2019, 91, 5433–5445. 10.1021/acs.analchem.9b00776.
    1. Cajka T.; Davis R.; Austin K. J.; Newman J. W.; German J. B.; Fiehn O.; Smilowitz J. T. Using a Lipidomics Approach for Nutritional Phenotyping in Response to a Test Meal Containing Gamma-Linolenic Acid. Metabolomics 2016, 12, 127.10.1007/s11306-016-1075-9.
    1. Sawrey-Kubicek L.; Zhu C.; Bardagjy A. S.; Rhodes C. H.; Sacchi R.; Randolph J. M.; Steinberg F. M.; Zivkovic A. M. Whole egg consumption compared with yolk-free egg increases the cholesterol efflux capacity of high-density lipoproteins in overweight, postmenopausal women. Am. J. Clin. Nutr. 2019, 110, 617–627. 10.1093/ajcn/nqz088.
    1. Onis M. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr. 2006, 95, 76–85. 10.1111/j.1651-2227.2006.tb02378.x.

Source: PubMed

3
Prenumerera