Prospective randomized study for optimal insulin therapy in type 2 diabetic patients with secondary failure

Yumi Miyashita, Rimei Nishimura, Masami Nemoto, Toru Matsudaira, Hideaki Kurata, Tamotsu Yokota, Kuninobu Yokota, Katsuyoshi Tojo, Kazunori Utsunomiya, Naoko Tajima, Yumi Miyashita, Rimei Nishimura, Masami Nemoto, Toru Matsudaira, Hideaki Kurata, Tamotsu Yokota, Kuninobu Yokota, Katsuyoshi Tojo, Kazunori Utsunomiya, Naoko Tajima

Abstract

Background: The large clinical trials proved that Basal-Bolus (BB) insulin therapy was effective in the prevention of diabetic complications and their progression. However, BB therapy needs multiple insulin injections per a day. In this regard, a biphasic insulin analogue needs only twice-daily injections, and is able to correct postprandial hyperglycemia. Therefore it may achieve the blood glucose control as same as that of BB therapy and prevent the diabetic complications including macroangiopathy.

Methods: In PROBE (Prospective, Randomized, Open, Blinded-Endpoint) design, forty-two type 2 diabetic patients (male: 73.8%, median(inter quartile range) age: 64.5(56.8-71.0)years) with secondary failure of sulfonylurea (SU) were randomly assigned to BB therapy with a thrice-daily insulin aspart and once-daily basal insulin (BB group) or to conventional therapy with a twice-daily biphasic insulin analogue (30 Mix group), and were followed up for 6 months to compare changes in HbA1c, daily glycemic profile, intima-media thickness (IMT) of carotid artery, adiponectin levels, amounts of insulin used, and QOL between the two groups.

Results: After 6 months, HbA1c was significantly reduced in both groups compared to baseline (30 Mix; 9.3(8.1-11.3) --> 7.4(6.9-8.7)%, p < 0.01, vs BB;8.9(7.7-10.0) --> 6.9(6.2-7.3)%, p < 0.01), with no significant difference between the groups in percentage change in HbA1c (30 Mix; -14.7(-32.5- (-)7.5)% vs BB -17.8(-30.1- (-)11.1)%, p = 0.32). There was a significant decrease in daily glycemic profile at all points except dinner time in both groups compared to baseline. There was a significant increase in the amount of insulin used in the 30 Mix group after treatment compared to baseline (30 Mix;0.30(0.17-0.44) --> 0.39(0.31-0.42) IU/kg, p = 0.01). There was no significant difference in IMT, BMI, QOL or adiponectin levels in either group compared to baseline.

Conclusion: Both BB and 30 mix group produced comparable reductions in HbA1c in type 2 diabetic patients with secondary failure. There was no significant change in IMT as an indicator of early atherosclerotic changes between the two groups. The basal-bolus insulin therapy may not be necessarily needed if the type 2 diabetic patients have become secondary failure.

Trial registration: Current Controlled Trials number, NCT00348231.

Figures

Figure 1
Figure 1
Trial profile.
Figure 2
Figure 2
Median percentage Change from Baseline to 6 months in HbA1c, BMI, Insulin dose/BW, Max IMT, Adiponectin, QOL. The box-and-whisker plots represented medians and inter quartile ranges and ranges. The medians of each data were compared using Wilcoxon rank-sum test. BMI; body mass index, BW; body weight, Max IMT; maximum intima media thickness, QOL; quality of life.
Figure 3
Figure 3
Median percentage Change from Baseline to 6 months in daily profile of self-measured capillary glucose. The box-and-whisker plots represented medians and inter quartile ranges and ranges. No significant difference was found between the both group in any time.

References

    1. Standards of medical care in diabetes–2007. Diabetes Care. 2007;30:S4–S41.
    1. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329:977–986. doi: 10.1056/NEJM199309303291401.
    1. The effect of intensive diabetes therapy on measures of autonomic nervous system function in the Diabetes Control and Complications Trial (DCCT) Diabetologia. 1998;41:416–423. doi: 10.1007/s001250050924.
    1. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, Kojima Y, Furuyoshi N, Shichiri M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28:103–117. doi: 10.1016/0168-8227(95)01064-K.
    1. JDFI Current status, Future Directions. Report of the Juvenile Diabetes Foundation International World Conference on Diabetes Research: 1985; monaco. 1985.
    1. Balkau B, Hu G, Qiao Q, Tuomilehto J, Borch-Johnsen K, Pyorala K. Prediction of the risk of cardiovascular mortality using a score that includes glucose as a risk factor. The DECODE Study. Diabetologia. 2004;47:2118–2128. doi: 10.1007/s00125-004-1574-5.
    1. Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care. 1999;22:920–924. doi: 10.2337/diacare.22.6.920.
    1. Poli A, Tremoli E, Colombo A, Sirtori M, Pignoli P, Paoletti R. Ultrasonographic measurement of the common carotid artery wall thickness in hypercholesterolemic patients. A new model for the quantitation and follow-up of preclinical atherosclerosis in living human subjects. Atherosclerosis. 1988;70:253–261. doi: 10.1016/0021-9150(88)90176-1.
    1. Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation. 1986;74:1399–1406.
    1. Yamasaki Y, Kawamori R, Matsushima H, Nishizawa H, Kodama M, Kajimoto Y, Morishima T, Kamada T. Atherosclerosis in carotid artery of young IDDM patients monitored by ultrasound high-resolution B-mode imaging. Diabetes. 1994;43:634–639. doi: 10.2337/diabetes.43.5.634.
    1. Handa N, Matsumoto M, Maeda H, Hougaku H, Ogawa S, Fukunaga R, Yoneda S, Kimura K, Kamada T. Ultrasonic evaluation of early carotid atherosclerosis. Stroke. 1990;21:1567–1572.
    1. Bradley C. Diabetes treatment satisfaction questionnaire. In: Bradley C, editor. Handbook of psychology and diabetes. Chur: Harwood Academic Publishers; 1994.
    1. Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA(1c) Diabetes Care. 2003;26:881–885. doi: 10.2337/diacare.26.3.881.
    1. Woerle HJ, Neumann C, Zschau S, Tenner S, Irsigler A, Schirra J, Gerich JE, Goke B. Impact of fasting and postprandial glycemia on overall glycemic control in type 2 diabetes Importance of postprandial glycemia to achieve target HbA1c levels. Diabetes Res Clin Pract. 2007;77:280–285. doi: 10.1016/j.diabres.2006.11.011.
    1. Temelkova-Kurktschiev TS, Koehler C, Henkel E, Leonhardt W, Fuecker K, Hanefeld M. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care. 2000;23:1830–1834. doi: 10.2337/diacare.23.12.1830.
    1. Beks PH, Mackaay AJ, de Vries H, de Neeling JN, Bouter LM, Heine RJ. Carotid artery stenosis is related to blood glucose level in an elderly Caucasian population: the Hoorn Study. Diabetologia. 1997;40:290–298. doi: 10.1007/s001250050676.
    1. Bonora E, Kiechl S, Oberhollenzer F, Egger G, Bonadonna RC, Muggeo M, Willeit J. Impaired glucose tolerance, Type II diabetes mellitus and carotid atherosclerosis: prospective results from the Bruneck Study. Diabetologia. 2000;43:156–164. doi: 10.1007/s001250050024.
    1. Dullaart RP, de Vries R, van Tol A, Sluiter WJ. Lower plasma adiponectin is a marker of increased intima-media thickness associated with type 2 diabetes mellitus and with male gender. Eur J Endocrinol. 2007;156:387–394. doi: 10.1530/EJE-06-0681.
    1. Martos-Moreno GA, Barrios V, Soriano-Guillen L, Argente J. Relationship between adiponectin levels, acylated ghrelin levels, and short-term body mass index changes in children with diabetes mellitus type 1 at diagnosis and after insulin therapy. Eur J Endocrinol. 2006;155:757–761. doi: 10.1530/eje.1.02273.
    1. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999;100:2473–2476.
    1. Fasshauer M, Kralisch S, Klier M, Lossner U, Bluher M, Klein J, Paschke R. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2003;301:1045–1050. doi: 10.1016/S0006-291X(03)00090-1.
    1. Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M, Okamoto Y, Ohashi K, Nagaretani H, Kishida K, et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation. 2003;107:671–674. doi: 10.1161/01.CIR.0000055188.83694.B3.
    1. Gottsater A, Szelag B, Kangro M, Wroblewski M, Sundkvist G. Plasma adiponectin and serum advanced glycated end-products increase and plasma lipid concentrations decrease with increasing duration of type 2 diabetes. Eur J Endocrinol. 2004;151:361–366. doi: 10.1530/eje.0.1510361.
    1. Monzillo LU, Hamdy O, Horton ES, Ledbury S, Mullooly C, Jarema C, Porter S, Ovalle K, Moussa A, Mantzoros CS. Effect of lifestyle modification on adipokine levels in obese subjects with insulin resistance. Obes Res. 2003;11:1048–1054. doi: 10.1038/oby.2003.144.
    1. Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R, Giugliano D. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. Jama. 2003;289:1799–1804. doi: 10.1001/jama.289.14.1799.
    1. Joshi SR, Kalra S, Badgandi M, Rao YS, Chawla M. Designer insulins regimens in clinical practice–pilot multicenter Indian study. J Assoc Physicians India. 2005;53:775–779.
    1. Holman RR, Thorne KI, Farmer AJ, Davies MJ, Keenan JF, Paul S, Levy JC. Addition of biphasic, prandial, or basal insulin to oral therapy in type 2 diabetes. N Engl J Med. 2007;357:1716–1730. doi: 10.1056/NEJMoa075392.

Source: PubMed

3
Prenumerera