OCT for glaucoma diagnosis, screening and detection of glaucoma progression

Igor I Bussel, Gadi Wollstein, Joel S Schuman, Igor I Bussel, Gadi Wollstein, Joel S Schuman

Abstract

Optical coherence tomography (OCT) is a commonly used imaging modality in the evaluation of glaucomatous damage. The commercially available spectral domain (SD)-OCT offers benefits in glaucoma assessment over the earlier generation of time domain-OCT due to increased axial resolution, faster scanning speeds and has been reported to have improved reproducibility but similar diagnostic accuracy. The capabilities of SD-OCT are rapidly advancing with 3D imaging, reproducible registration, and advanced segmentation algorithms of macular and optic nerve head regions. A review of the evidence to date suggests that retinal nerve fibre layer remains the dominant parameter for glaucoma diagnosis and detection of progression while initial studies of macular and optic nerve head parameters have shown promising results. SD-OCT still currently lacks the diagnostic performance for glaucoma screening.

Keywords: Glaucoma.

Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

References

    1. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science 1991;254:1178–81.
    1. Hee MR, Izatt JA, Swanson EA, et al. Optical coherence tomography of the human retina. Arch Ophthalmol 1995;113:325–32.
    1. Wong JJ, Chen TC, Shen LQ, et al. Macular imaging for glaucoma using spectral-domain optical coherence tomography: a review. Semin Ophthalmol 2012;27:160–6.
    1. Mansouri K, Leite MT, Medeiros FA, et al. Assessment of rates of structural change in glaucoma using imaging technologies. Eye 2011;25:269–77.
    1. Sung KR, Wollstein G, Kim NR, et al. Macular assessment using optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol 2012;96:1452–5.
    1. Ervin AM, Boland MV, Myrowitz EH, et al. Screening for glaucoma: comparative effectiveness. Comparative effectiveness reviews. Rockville, MD: Agency for Healthcare Research and Quality, 2012.
    1. Bengtsson B, Andersson S, Heijl A. Performance of time-domain and spectral-domain Optical Coherence Tomography for glaucoma screening. Acta Ophthalmol 2010;90:310–5.
    1. Mwanza JC, Oakley JD, Budenz DL, et al. Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology 2011;118:241–8.
    1. Sung KR, Na JH, Lee Y. Glaucoma diagnostic capabilities of optic nerve head parameters as determined by Cirrus HD optical coherence tomography. J Glaucoma 2012;21:498–504.
    1. Kotowski J, Folio LS, Wollstein G, et al. Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans. Br J Ophthalmol 2012;96:1420–5.
    1. Mwanza JC, Durbin MK, Budenz DL, et al. Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology 2012;119:1151–8.
    1. Jeoung JW, Choi YJ, Park KH, et al. Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2013;54:4422–9.
    1. Takayama K, Hangai M, Durbin M, et al. A novel method to detect local ganglion cell loss in early glaucoma using spectral-domain optical coherence tomography. Invest OphthalmolVis Sci 2012;53:6904–13.
    1. Lisboa R, Paranhos A, Jr, Weinreb RN, et al. Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. Invest Ophthalmol Vis Sci 2013;54:3417–25.
    1. Chang RT, Singh K. Myopia and glaucoma: diagnostic and therapeutic challenges. Curr Opin Ophthal 2013;24:96–101.
    1. Mwanza JC, Sayyad FE, Aref AA, et al. Rates of abnormal retinal nerve fiber layer and ganglion cell layer OCT scans in healthy myopic eyes: cirrus versus RTVue. Ophthalmic Surg Lasers Imaging 2012;43(6 Suppl):S67–74.
    1. Choi YJ, Jeoung JW, Park KH, et al. Glaucoma detection ability of ganglion cell-inner plexiform layer thickness by spectral-domain optical coherence tomography in high myopia. Invest Ophthalmol Vis Sci 2013;54:2296–304.
    1. Akashi A, Kanamori A, Nakamura M, et al. The ability of macular parameters and circumpapillary retinal nerve fiber layer by three SD-OCT instruments to diagnose highly myopic glaucoma. Invest Ophthal Vis Sci 2013;54:6025–32.
    1. Johnson ZK, Siddiqui MA, Azuara-Blanco A. The quality of reporting of diagnostic accuracy studies of optical coherence tomography in glaucoma. Ophthalmology 2007;114:1607–12.
    1. Pierro L, Gagliardi M, Iuliano L, et al. Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments. Invest Ophthal Vis Sci 2012;53:5912–20.
    1. Akashi A, Kanamori A, Nakamura M, et al. Comparative Assessment for the Ability of Cirrus, RTVue, and 3D-OCT to Diagnose Glaucoma. Invest Ophthal Vis Sci 2013;54:4478–84.
    1. Li G, Fansi AK, Boivin JF, et al. Screening for glaucoma in high-risk populations using optical coherence tomography. Ophthalmology 2010;117:453–61.
    1. Leung CK, Yu M, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss. Ophthalmology 2012;119:731–7.
    1. Leung CK, Chiu V, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. Ophthalmology 2011;118:1558–62.
    1. Wollstein G, Schuman JS, Price LL, et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol 2005;123:464–70.
    1. Wessel JM, Horn FK, Tornow RP, et al. Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2013;54:3613–20.
    1. Naghizadeh F, Garas A, Vargha P, et al. Detection of early glaucomatous progression with different parameters of the RTVue optical coherence tomograph. J Glaucoma. In press.
    1. Na JH, Sung KR, Baek S, et al. Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012;53:3817–26.
    1. Sung KR, Sun JH, Na JH, et al. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology 2012;119:308–13.
    1. Na JH, Sung KR, Lee JR, et al. Detection of glaucomatous progression by spectral-domain optical coherence tomography. Ophthalmology 2013; 120:1388–95.

Source: PubMed

3
Prenumerera