Blocking endogenous IL-6 impairs mobilization of free fatty acids during rest and exercise in lean and obese men

Beckey Trinh, Merel Peletier, Casper Simonsen, Peter Plomgaard, Kristian Karstoft, Bente Klarlund Pedersen, Gerrit van Hall, Helga Ellingsgaard, Beckey Trinh, Merel Peletier, Casper Simonsen, Peter Plomgaard, Kristian Karstoft, Bente Klarlund Pedersen, Gerrit van Hall, Helga Ellingsgaard

Abstract

Lack of interleukin-6 (IL-6) leads to expansion of adipose tissue mass in rodents and humans. The exact underlying mechanisms have not been identified. In this placebo-controlled, non-randomized, participant-blinded crossover study, we use the IL-6 receptor antibody tocilizumab to investigate the role of endogenous IL-6 in regulating systemic energy metabolism at rest and during exercise and recovery in lean and obese men using tracer dilution methodology. Tocilizumab reduces fatty acid appearance in the circulation under all conditions in lean and obese individuals, whereas lipolysis (the rate of glycerol appearance into the circulation) is mostly unaffected. The fact that fatty acid oxidation is unaffected by IL-6 receptor blockade suggests increased re-esterification of fatty acids. Glucose kinetics are unaffected. We find that blocking endogenous IL-6 signaling with tocilizumab impairs fat mobilization, which may contribute to expansion of adipose tissue mass and, thus, affect the health of individuals undergoing anti-IL-6 therapy (Clinicaltrials.gov: NCT03967691).

Keywords: IL-6 receptor; Interleukin-6; exercise; fatty acids; glycerol; lipolysis; metabolism; obesity; stable isotopes; tocilizumab.

Conflict of interest statement

The authors declare no competing interests.

© 2021 The Authors.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Schematic overview of the studyNaCl 0.9% was infused on saline day and day 21, and tocilizumab was infused on day 1. IC, indirect calorimetry; Wattmax, peak power output; •, blood sample;°, breath sample.
Figure 2
Figure 2
IL-6 receptor blockade increases IL-6 concentration Plasma concentration of IL-6. Left panel: data from the lean group (n = 13). Right panel: data from the obese group (n = 9). Data are represented as mean ± SEM. ∗p 

Figure 3

IL-6 receptor blockade reduces release…

Figure 3

IL-6 receptor blockade reduces release of palmitate into the circulation but has no…

Figure 3
IL-6 receptor blockade reduces release of palmitate into the circulation but has no effect on palmitate oxidation (A–F) Plasma concentration of palmitate (A), Ra palmitate per kilogram of fat mass (B) and per kilogram of fat free mass (FFM) (C), Rd palmitate per kilogram of FFM (D), palmitate oxidation rate (E), and average plasma concentration of triglycerides in each phase (F). Left panels: data from the lean group (n = 11 for palmitate data, n = 13 for triglycerides). Right panels: data from the obese group (n = 9). Gaps are left at the beginning of each phase because data were calculated based on the average of two consecutive measurements without overlapping phases (see details in the STAR Methods). Data are represented as mean ± SEM. ∗p < 0.05 day 1 versus saline, ∗∗p < 0.01 day 1 versus saline, #p < 0.05 day 21 versus saline, ##p < 0.01 day 21 versus saline using a linear mixed-effects model and Dunnett’s method for many-to-one comparisons. Ra, rate of appearance; Rd, rate of disappearance. See also Figure S2.

Figure 4

IL-6 receptor blockade reduces lipolysis…

Figure 4

IL-6 receptor blockade reduces lipolysis in obese individuals and has no effect on…

Figure 4
IL-6 receptor blockade reduces lipolysis in obese individuals and has no effect on glucose kinetics (A–G) Plasma concentration of glycerol (A), Ra glycerol per kilogram of fat mass (B) and per kilogram of FFM (C), ratio of Ra palmitate to Ra glycerol (D), plasma glucose concentration (E), Ra glucose (F), and Rd glucose (G). Left panels: data from the lean group (n = 12). Right panels: data from the obese group (n = 9). Gaps are left at the beginning of each phase because data were calculated based on the average of two consecutive measurements without overlapping phases (see details in the STAR Methods). Data are represented as mean ± SEM. ∗p < 0.05 day 1 versus saline, ∗∗p < 0.01 day 1 versus saline, #p < 0.05 day 21 versus saline, ##p < 0.01 day 21 versus saline using a linear mixed-effects model and Dunnett’s method for many-to-one comparisons.

Figure 5

IL-6 receptor blockade decreases cortisol…

Figure 5

IL-6 receptor blockade decreases cortisol and glucagon levels (A–E) Plasma concentrations of cortisol…

Figure 5
IL-6 receptor blockade decreases cortisol and glucagon levels (A–E) Plasma concentrations of cortisol (A), insulin (B), glucagon (C), adrenaline (D), and noradrenaline (E). Left panels: data from the lean group (n = 13). Right panels: data from the obese group (n = 9). Data are represented as mean ± SEM. ∗p 
Similar articles
Cited by
References
    1. Ostrowski K., Hermann C., Bangash A., Schjerling P., Nielsen J.N., Pedersen B.K. A trauma-like elevation of plasma cytokines in humans in response to treadmill running. J. Physiol. 1998;513:889–894. - PMC - PubMed
    1. Ostrowski K., Rohde T., Zacho M., Asp S., Pedersen B.K. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J. Physiol. 1998;508:949–953. - PMC - PubMed
    1. Steensberg A., van Hall G., Osada T., Sacchetti M., Saltin B., Klarlund Pedersen B. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J. Physiol. 2000;529:237–242. - PMC - PubMed
    1. Lyngsø D., Simonsen L., Bülow J. Metabolic effects of interleukin-6 in human splanchnic and adipose tissue. J. Physiol. 2002;543:379–386. - PMC - PubMed
    1. van Hall G., Steensberg A., Sacchetti M., Fischer C., Keller C., Schjerling P., Hiscock N., Møller K., Saltin B., Febbraio M.A., Pedersen B.K. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J. Clin. Endocrinol. Metab. 2003;88:3005–3010. - PubMed
Show all 63 references
Publication types
MeSH terms
Associated data
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 3
Figure 3
IL-6 receptor blockade reduces release of palmitate into the circulation but has no effect on palmitate oxidation (A–F) Plasma concentration of palmitate (A), Ra palmitate per kilogram of fat mass (B) and per kilogram of fat free mass (FFM) (C), Rd palmitate per kilogram of FFM (D), palmitate oxidation rate (E), and average plasma concentration of triglycerides in each phase (F). Left panels: data from the lean group (n = 11 for palmitate data, n = 13 for triglycerides). Right panels: data from the obese group (n = 9). Gaps are left at the beginning of each phase because data were calculated based on the average of two consecutive measurements without overlapping phases (see details in the STAR Methods). Data are represented as mean ± SEM. ∗p < 0.05 day 1 versus saline, ∗∗p < 0.01 day 1 versus saline, #p < 0.05 day 21 versus saline, ##p < 0.01 day 21 versus saline using a linear mixed-effects model and Dunnett’s method for many-to-one comparisons. Ra, rate of appearance; Rd, rate of disappearance. See also Figure S2.
Figure 4
Figure 4
IL-6 receptor blockade reduces lipolysis in obese individuals and has no effect on glucose kinetics (A–G) Plasma concentration of glycerol (A), Ra glycerol per kilogram of fat mass (B) and per kilogram of FFM (C), ratio of Ra palmitate to Ra glycerol (D), plasma glucose concentration (E), Ra glucose (F), and Rd glucose (G). Left panels: data from the lean group (n = 12). Right panels: data from the obese group (n = 9). Gaps are left at the beginning of each phase because data were calculated based on the average of two consecutive measurements without overlapping phases (see details in the STAR Methods). Data are represented as mean ± SEM. ∗p < 0.05 day 1 versus saline, ∗∗p < 0.01 day 1 versus saline, #p < 0.05 day 21 versus saline, ##p < 0.01 day 21 versus saline using a linear mixed-effects model and Dunnett’s method for many-to-one comparisons.
Figure 5
Figure 5
IL-6 receptor blockade decreases cortisol and glucagon levels (A–E) Plasma concentrations of cortisol (A), insulin (B), glucagon (C), adrenaline (D), and noradrenaline (E). Left panels: data from the lean group (n = 13). Right panels: data from the obese group (n = 9). Data are represented as mean ± SEM. ∗p 

References

    1. Ostrowski K., Hermann C., Bangash A., Schjerling P., Nielsen J.N., Pedersen B.K. A trauma-like elevation of plasma cytokines in humans in response to treadmill running. J. Physiol. 1998;513:889–894.
    1. Ostrowski K., Rohde T., Zacho M., Asp S., Pedersen B.K. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J. Physiol. 1998;508:949–953.
    1. Steensberg A., van Hall G., Osada T., Sacchetti M., Saltin B., Klarlund Pedersen B. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J. Physiol. 2000;529:237–242.
    1. Lyngsø D., Simonsen L., Bülow J. Metabolic effects of interleukin-6 in human splanchnic and adipose tissue. J. Physiol. 2002;543:379–386.
    1. van Hall G., Steensberg A., Sacchetti M., Fischer C., Keller C., Schjerling P., Hiscock N., Møller K., Saltin B., Febbraio M.A., Pedersen B.K. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J. Clin. Endocrinol. Metab. 2003;88:3005–3010.
    1. Wolsk E., Mygind H., Grøndahl T.S., Pedersen B.K., van Hall G. IL-6 selectively stimulates fat metabolism in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2010;299:E832–E840.
    1. Mohamed-Ali V., Goodrick S., Rawesh A., Katz D.R., Miles J.M., Yudkin J.S., Klein S., Coppack S.W. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J. Clin. Endocrinol. Metab. 1997;82:4196–4200.
    1. Cottam D.R., Mattar S.G., Barinas-Mitchell E., Eid G., Kuller L., Kelley D.E., Schauer P.R. The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: implications and effects of weight loss. Obes. Surg. 2004;14:589–600.
    1. Scheele C., Nielsen S., Kelly M., Broholm C., Nielsen A.R., Taudorf S., Pedersen M., Fischer C.P., Pedersen B.K. Satellite cells derived from obese humans with type 2 diabetes and differentiated into myocytes in vitro exhibit abnormal response to IL-6. PLoS ONE. 2012;7:e39657.
    1. Jiang L.Q., Duque-Guimaraes D.E., Machado U.F., Zierath J.R., Krook A. Altered response of skeletal muscle to IL-6 in type 2 diabetic patients. Diabetes. 2013;62:355–361.
    1. Wallenius V., Wallenius K., Ahrén B., Rudling M., Carlsten H., Dickson S.L., Ohlsson C., Jansson J.O. Interleukin-6-deficient mice develop mature-onset obesity. Nat. Med. 2002;8:75–79.
    1. Wedell-Neergaard A.S., Lang Lehrskov L., Christensen R.H., Legaard G.E., Dorph E., Larsen M.K., Launbo N., Fagerlind S.R., Seide S.K., Nymand S. Exercise-Induced Changes in Visceral Adipose Tissue Mass Are Regulated by IL-6 Signaling: A Randomized Controlled Trial. Cell Metab. 2019;29:844–855.e3.
    1. Christensen R.H., Lehrskov L.L., Wedell-Neergaard A.S., Legaard G.E., Ried-Larsen M., Karstoft K., Krogh-Madsen R., Pedersen B.K., Ellingsgaard H., Rosenmeier J.B. Aerobic Exercise Induces Cardiac Fat Loss and Alters Cardiac Muscle Mass Through an Interleukin-6 Receptor-Dependent Mechanism: Cardiac Analysis of a Double-Blind Randomized Controlled Clinical Trial in Abdominally Obese Humans. Circulation. 2019;140:1684–1686.
    1. Smolen J.S., Landewé R.B.M., Bijlsma J.W.J., Burmester G.R., Dougados M., Kerschbaumer A., McInnes I.B., Sepriano A., van Vollenhoven R.F., de Wit M. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020;79:685–699.
    1. Novo Nordisk . 2020. Novo Nordisk to acquire Corvidia Therapeutics and expand presence in cardiovascular disease.
    1. Zhang X., Chen Y.C., Terao K. Clinical pharmacology of tocilizumab for the treatment of polyarticular-course juvenile idiopathic arthritis. Expert Rev. Clin. Pharmacol. 2017;10:471–482.
    1. Nishimoto N., Terao K., Mima T., Nakahara H., Takagi N., Kakehi T. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood. 2008;112:3959–3964.
    1. Uchiyama Y., Yoshida H., Koike N., Hayakawa N., Sugita A., Nishimura T., Mihara M. Anti-IL-6 receptor antibody increases blood IL-6 level via the blockade of IL-6 clearance, but not via the induction of IL-6 production. Int. Immunopharmacol. 2008;8:1595–1601.
    1. Zhang X., Peck R. Clinical pharmacology of tocilizumab for the treatment of patients with rheumatoid arthritis. Expert Rev. Clin. Pharmacol. 2011;4:539–558.
    1. Frayn K.N. Turning over our fat stores: the key to metabolic health Blaxter Award Lecture 2018. Proc. Nutr. Soc. 2019;78:398–406.
    1. Petersen E.W., Carey A.L., Sacchetti M., Steinberg G.R., Macaulay S.L., Febbraio M.A., Pedersen B.K. Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. Am. J. Physiol. Endocrinol. Metab. 2005;288:E155–E162.
    1. Hotamisligil G.S. Inflammation and metabolic disorders. Nature. 2006;444:860–867.
    1. Skurk T., Alberti-Huber C., Herder C., Hauner H. Relationship between adipocyte size and adipokine expression and secretion. J. Clin. Endocrinol. Metab. 2007;92:1023–1033.
    1. Coppack S.W., Persson M., Judd R.L., Miles J.M. Glycerol and nonesterified fatty acid metabolism in human muscle and adipose tissue in vivo. Am. J. Physiol. 1999;276:E233–E240.
    1. Havel R.J. Some influences of the sympathetic nervous system and insulin on mobilization of fat from adipose tissue: studies of the turnover rates of free fatty acids and glycerol. Ann. N Y Acad. Sci. 1965;131:91–101.
    1. Mittendorfer B., Liem O., Patterson B.W., Miles J.M., Klein S. What does the measurement of whole-body fatty acid rate of appearance in plasma by using a fatty acid tracer really mean? Diabetes. 2003;52:1641–1648.
    1. van Hall G., Sacchetti M., Rådegran G., Saltin B. Human skeletal muscle fatty acid and glycerol metabolism during rest, exercise and recovery. J. Physiol. 2002;543:1047–1058.
    1. Sacchetti M., Saltin B., Olsen D.B., van Hall G. High triacylglycerol turnover rate in human skeletal muscle. J. Physiol. 2004;561:883–891.
    1. Wolsk E., Mygind H., Grøndahl T.S., Pedersen B.K., van Hall G. The role of leptin in human lipid and glucose metabolism: the effects of acute recombinant human leptin infusion in young healthy males. Am. J. Clin. Nutr. 2011;94:1533–1544.
    1. Van Hall G., Bülow J., Sacchetti M., Al Mulla N., Lyngso D., Simonsen L. Regional fat metabolism in human splanchnic and adipose tissues; the effect of exercise. J. Physiol. 2002;543:1033–1046.
    1. Wan Z., Ritchie I., Beaudoin M.S., Castellani L., Chan C.B., Wright D.C. IL-6 indirectly modulates the induction of glyceroneogenic enzymes in adipose tissue during exercise. PLoS ONE. 2012;7:e41719.
    1. Ji P., Drackley J.K., Khan M.J., Loor J.J. Inflammation- and lipid metabolism-related gene network expression in visceral and subcutaneous adipose depots of Holstein cows. J. Dairy Sci. 2014;97:3441–3448.
    1. Wasserman D.H. Four grams of glucose. Am. J. Physiol. Endocrinol. Metab. 2009;296:E11–E21.
    1. Steensberg A., Fischer C.P., Sacchetti M., Keller C., Osada T., Schjerling P., van Hall G., Febbraio M.A., Pedersen B.K. Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans. J. Physiol. 2003;548:631–638.
    1. Febbraio M.A., Hiscock N., Sacchetti M., Fischer C.P., Pedersen B.K. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes. 2004;53:1643–1648.
    1. Tsigos C., Papanicolaou D.A., Defensor R., Mitsiadis C.S., Kyrou I., Chrousos G.P. Dose effects of recombinant human interleukin-6 on pituitary hormone secretion and energy expenditure. Neuroendocrinology. 1997;66:54–62.
    1. Steensberg A., Fischer C.P., Keller C., Møller K., Pedersen B.K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 2003;285:E433–E437.
    1. Christiansen J.J., Djurhuus C.B., Gravholt C.H., Iversen P., Christiansen J.S., Schmitz O., Weeke J., Jørgensen J.O., Møller N. Effects of cortisol on carbohydrate, lipid, and protein metabolism: studies of acute cortisol withdrawal in adrenocortical failure. J. Clin. Endocrinol. Metab. 2007;92:3553–3559.
    1. Samra J.S., Clark M.L., Humphreys S.M., MacDonald I.A., Bannister P.A., Frayn K.N. Effects of physiological hypercortisolemia on the regulation of lipolysis in subcutaneous adipose tissue. J. Clin. Endocrinol. Metab. 1998;83:626–631.
    1. Divertie G.D., Jensen M.D., Miles J.M. Stimulation of lipolysis in humans by physiological hypercortisolemia. Diabetes. 1991;40:1228–1232.
    1. Horber F.F., Marsh H.M., Haymond M.W. Differential effects of prednisone and growth hormone on fuel metabolism and insulin antagonism in humans. Diabetes. 1991;40:141–149.
    1. Darmon P., Dadoun F., Boullu-Ciocca S., Grino M., Alessi M.C., Dutour A. Insulin resistance induced by hydrocortisone is increased in patients with abdominal obesity. Am. J. Physiol. Endocrinol. Metab. 2006;291:E995–E1002.
    1. Owen O.E., Cahill G.F., Jr. Metabolic effects of exogenous glucocorticoids in fasted man. J. Clin. Invest. 1973;52:2596–2605.
    1. Ellingsgaard H., Ehses J.A., Hammar E.B., Van Lommel L., Quintens R., Martens G., Kerr-Conte J., Pattou F., Berney T., Pipeleers D. Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc. Natl. Acad. Sci. USA. 2008;105:13163–13168.
    1. Watt M.J., Carey A.L., Wolsk-Petersen E., Kraemer F.B., Pedersen B.K., Febbraio M.A. Hormone-sensitive lipase is reduced in the adipose tissue of patients with type 2 diabetes mellitus: influence of IL-6 infusion. Diabetologia. 2005;48:105–112.
    1. Tsigos C., Papanicolaou D.A., Kyrou I., Defensor R., Mitsiadis C.S., Chrousos G.P. Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. J. Clin. Endocrinol. Metab. 1997;82:4167–4170.
    1. Nehlsen-Cannarella S.L., Fagoaga O.R., Nieman D.C., Henson D.A., Butterworth D.E., Schmitt R.L., Bailey E.M., Warren B.J., Utter A., Davis J.M. Carbohydrate and the cytokine response to 2.5 h of running. J. Appl. Physiol. 1997;82:1662–1667.
    1. Nieman D.C., Nehlsen-Cannarella S.L., Fagoaga O.R., Henson D.A., Utter A., Davis J.M., Williams F., Butterworth D.E. Influence of mode and carbohydrate on the cytokine response to heavy exertion. Med. Sci. Sports Exerc. 1998;30:671–678.
    1. Keller C., Keller P., Marshal S., Pedersen B.K. IL-6 gene expression in human adipose tissue in response to exercise--effect of carbohydrate ingestion. J. Physiol. 2003;550:927–931.
    1. Keller C., Steensberg A., Pilegaard H., Osada T., Saltin B., Pedersen B.K., Neufer P.D. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J. 2001;15:2748–2750.
    1. Steensberg A., Febbraio M.A., Osada T., Schjerling P., van Hall G., Saltin B., Pedersen B.K. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J. Physiol. 2001;537:633–639.
    1. Elia M., Khan K., Calder G., Kurpad A. Glycerol exchange across the human forearm assessed by a combination of tracer and arteriovenous exchange techniques. Clin. Sci. (Lond.) 1993;84:99–104.
    1. Edvardsen E., Hem E., Anderssen S.A. End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: a cross-sectional study. PLoS ONE. 2014;9:e85276.
    1. Steele R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann. N Y Acad. Sci. 1959;82:420–430.
    1. Wolfe R.R. First Edition. Wiley-Liss, Inc; 1992. Radioactive and Stable Isotopes Tracers in Biomedicine. Principles and Practice of Kinetic Analysis.
    1. Frayn K.N. Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl. Physiol. 1983;55:628–634.
    1. Péronnet F., Massicotte D. Table of nonprotein respiratory quotient: an update. Can. J. Sport Sci. 1991;16:23–29.
    1. van Hall G. Correction factors for 13C-labelled substrate oxidation at whole-body and muscle level. Proc. Nutr. Soc. 1999;58:979–986.
    1. van Hall G., Sacchetti M., Rådegran G. Whole body and leg acetate kinetics at rest, during exercise and recovery in humans. J. Physiol. 2002;542:263–272.
    1. Bornø A., Foged L., van Hall G. Glucose and glycerol concentrations and their tracer enrichment measurements using liquid chromatography tandem mass spectrometry. J. Mass Spectrom. 2014;49:980–988.
    1. van Hall G., Steensberg A., Fischer C., Keller C., Møller K., Moseley P., Pedersen B.K. Interleukin-6 markedly decreases skeletal muscle protein turnover and increases nonmuscle amino acid utilization in healthy individuals. J. Clin. Endocrinol. Metab. 2008;93:2851–2858.
    1. Bojsen-Møller K.N., Jacobsen S.H., Dirksen C., Jørgensen N.B., Reitelseder S., Jensen J.E., Kristiansen V.B., Holst J.J., van Hall G., Madsbad S. Accelerated protein digestion and amino acid absorption after Roux-en-Y gastric bypass. Am. J. Clin. Nutr. 2015;102:600–607.
    1. Jacobsen S.H., Bojsen-Møller K.N., Dirksen C., Jørgensen N.B., Clausen T.R., Wulff B.S., Kristiansen V.B., Worm D., Hansen D.L., Holst J.J. Effects of gastric bypass surgery on glucose absorption and metabolism during a mixed meal in glucose-tolerant individuals. Diabetologia. 2013;56:2250–2254.

Source: PubMed

3
Prenumerera