Efficacy and safety of tranexamic acid administration in traumatic brain injury patients: a systematic review and meta-analysis

Shoji Yokobori, Tomoaki Yatabe, Yutaka Kondo, Kosaku Kinoshita, Japan Resuscitation Council (JRC) Neuroresuscitation Task Force and the Guidelines Editorial Committee, Yasuhiko Ajimi, Masaaki Iwase, Kyoko Unemoto, Junji Kumasawa, Jun Goto, Hitoshi Kobata, Atsushi Sawamura, Toru Hifumi, Eisei Hoshiyama, Mitsuru Honda, Yasuhiro Norisue, Shoji Matsumoto, Yasufumi Miyake, Takashi Moriya, Hideto Yasuda, Kazuma Yamakawa, Sunghoon Yang, Masahiro Wakasugi, Masao Nagayama, Hiroshi Nonogi, Shoji Yokobori, Tomoaki Yatabe, Yutaka Kondo, Kosaku Kinoshita, Japan Resuscitation Council (JRC) Neuroresuscitation Task Force and the Guidelines Editorial Committee, Yasuhiko Ajimi, Masaaki Iwase, Kyoko Unemoto, Junji Kumasawa, Jun Goto, Hitoshi Kobata, Atsushi Sawamura, Toru Hifumi, Eisei Hoshiyama, Mitsuru Honda, Yasuhiro Norisue, Shoji Matsumoto, Yasufumi Miyake, Takashi Moriya, Hideto Yasuda, Kazuma Yamakawa, Sunghoon Yang, Masahiro Wakasugi, Masao Nagayama, Hiroshi Nonogi

Abstract

Background: The exacerbation of intracranial bleeding is critical in traumatic brain injury (TBI) patients. Tranexamic acid (TXA) has been used to improve outcomes in TBI patient. However, the effectiveness of TXA treatment remains unclear. This study aimed to assess the effect of administration of TXA on clinical outcomes in patients with TBI by systematically reviewing the literature and synthesizing evidence of randomized controlled trials (RCTs).

Methods: MEDLINE, the Cochrane Central Register of Controlled Trials, and Igaku Chuo Zasshi (ICHUSHI) Web were searched. Selection criteria included randomized controlled trials with clinical outcomes of adult TBI patients administered TXA or placebo within 24 h after admission. Two investigators independently screened citations and conducted data extraction. The primary "critical" outcome was all-cause mortality. The secondary "important" outcomes were good neurological outcome rates, enlargement of bleeding, incidence of ischemia, and hemorrhagic intracranial complications. Random effect estimators with weights calculated by the inverse variance method were used to report risk ratios (RRs).

Results: A total of 640 records were screened. Seven studies were included for quantitative analysis. Of 10,044 patients from seven of the included studies, 5076 were randomly assigned to the TXA treatment group, and 4968 were assigned to placebo. In the TXA treatment group, 914 patients (18.0%) died, while 961 patients (19.3%) died in the placebo group. There was no significant difference between groups (RR, 0.93; 95% confidence interval, 0.86-1.01). No significant differences between the groups in other important outcomes were also observed.

Conclusions: TXA treatment demonstrated a tendency to reduce head trauma-related deaths in the TBI population, with no significant incidence of thromboembolic events. TXA treatment may therefore be suggested in the initial TBI care.

Keywords: Clotting; Fibrinolysis; Head-trauma; Hematoma; Hemorrhage; Meta-analysis; TBI.

Conflict of interest statement

Competing interestsThe authors declare no conflicts of interest.

© The Author(s) 2020.

Figures

Fig. 1
Fig. 1
Flow chart of the search strategy and study selection
Fig. 2
Fig. 2
Forest plot comparing the all-cause mortality values between the tranexamic acid and placebo groups. Risk of bias summary is listed as follows: a, random sequence generation (selection bias); b, allocation concealment (selection bias); c, blinding of participants and personnel (performance bias); d, blinding of outcome assessment (detection bias); e, incomplete outcome data (attrition bias); f, selective reporting (reporting bias); and g, other bias. TXA, tranexamic acid; CI, confidence interval
Fig. 3
Fig. 3
Forest plot comparing poor neurological outcome rates between the tranexamic acid and placebo groups. Risk of bias summary is listed as follows: a, random sequence generation (selection bias); b, allocation concealment (selection bias); c, blinding of participants and personnel (performance bias); d, blinding of outcome assessment (detection bias); e, incomplete outcome data (attrition bias); f, selective reporting (reporting bias); and g, other bias. TXA, tranexamic acid; CI, confidence interval
Fig. 4
Fig. 4
Forest plot comparing the incidence of ischemic or thromboembolic complications between the tranexamic acid and placebo-control groups. Risk of bias summary is listed as follows: a, random sequence generation (selection bias); b, allocation concealment (selection bias); c, blinding of participants and personnel (performance bias); d, blinding of outcome assessment (detection bias); e, incomplete outcome data (attrition bias); f, selective reporting (reporting bias); and g, other bias. TXA, tranexamic acid; CI, confidence interval
Fig. 5
Fig. 5
Forest plot comparing the incidence of hemorrhagic complications between the tranexamic acid and control groups. Risk of bias summary is listed as follows: a, random sequence generation (selection bias); b, allocation concealment (selection bias); c, blinding of participants and personnel (performance bias); d, blinding of outcome assessment (detection bias); e, incomplete outcome data (attrition bias); f, selective reporting (reporting bias); and g, other bias. TXA, tranexamic acid; CI, confidence interval

References

    1. Yokobori S, Yamaguchi M, Igarashi Y, Hironaka K, Onda H, Kuwamoto K, et al. Outcome and refractory factor of intensive treatment for geriatric traumatic brain injury: analysis of 1165 cases registered in the Japan Neurotrauma data Bank. World Neurosurg. 2016;86:127–133. doi: 10.1016/j.wneu.2015.09.105.
    1. Gustavsson A, Svensson M, Jacobi F, Allgulander C, Alonso J, Beghi E, et al. Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol. 2011;21(10):718–779. doi: 10.1016/j.euroneuro.2011.08.008.
    1. Vink R, Nimmo AJ. Multifunctional drugs for head injury. Neurotherapeutics. 2009;6(1):28–42. doi: 10.1016/j.nurt.2008.10.036.
    1. Ishii K, Kinoshita T, Kiridume K, Watanabe A, Yamakawa K, Nakao S, et al. Impact of initial coagulation and fibrinolytic markers on mortality in patients with severe blunt trauma: a multicentre retrospective observational study. Scand J Trauma Resusc Emerg Med. 2019;27(1):25. doi: 10.1186/s13049-019-0606-6.
    1. Hifumi T, Kuroda Y, Kawakita K, Yamashita S, Oda Y, Dohi K, et al. Therapeutic hypothermia in patients with coagulopathy following severe traumatic brain injury. Scand J Trauma Resusc Emerg Med. 2017;25(1):120. doi: 10.1186/s13049-017-0465-y.
    1. Nakae R, Takayama Y, Kuwamoto K, Naoe Y, Sato H, Yokota H. Time course of coagulation and fibrinolytic parameters in patients with traumatic brain injury. J Neurotrauma. 2016;33(7):688–695. doi: 10.1089/neu.2015.4039.
    1. Huebner BR, Dorlac WC, Cribari C. Tranexamic acid use in prehospital uncontrolled hemorrhage. Wilderness Environ Med. 2017;28(2S):S50–S60. doi: 10.1016/j.wem.2016.12.006.
    1. Roberts I, Shakur H, Coats T, Hunt B, Balogun E, Barnetson L, et al. The CRASH-2 trial: a randomised controlled trial and economic evaluation of the effects of tranexamic acid on death, vascular occlusive events and transfusion requirement in bleeding trauma patients. Health Technol Assess. 2013;17(10):1–79. doi: 10.3310/hta17100.
    1. CRASH collaborators Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet. 2019;394(10210):1713–1723. doi: 10.1016/S0140-6736(19)32233-0.
    1. CRASH-2 trial collaborators et al. Lancet. 2010;376(9734):23–32. doi: 10.1016/S0140-6736(10)60835-5.
    1. Roberts I, Shakur H, Ker K, Coats T, CRASH collaborators Antifibrinolytic drugs for acute traumatic injury. Cochrane Database Syst Rev. 2011;1:CD004896.
    1. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34. doi: 10.1016/j.jclinepi.2009.06.006.
    1. Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. doi: 10.1136/bmj.l4898.
    1. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64:383–394. doi: 10.1016/j.jclinepi.2010.04.026.
    1. Chakroun-Walha O, Samet A, Jerbi M, Elbers RG, Blencowe NS, Boutron I, et al. Benefits of the tranexamic acid in head trauma with no extracranial bleeding: a prospective follow-up of 180 patients. Eur J Trauma Emerg Surg. 2019;45(4):719–726. doi: 10.1007/s00068-018-0974-z.
    1. Fakharian E, Abedzadeh-Kalahroudi M, Atoof F. Effect of tranexamic acid on prevention of hemorrhagic mass growth in patients with traumatic brain injury. World Neurosurg. 2018;109:e748–ee53. doi: 10.1016/j.wneu.2017.10.075.
    1. Yutthakasemsunt S, Kittiwatanagul W, Piyavechvirat P, Thinkamrop B, Phuenpathom N, Lumbiganon P. Tranexamic acid for patients with traumatic brain injury: a randomized, double-blinded, placebo-controlled trial. BMC Emerg Med. 2013;13:20. doi: 10.1186/1471-227X-13-20.
    1. Ebrahimi P, Mozafari J, Ilkhchi RB, Hanafi MG, Mousavinejad M. Intravenous tranexamic acid for subdural and epidural intracranial hemorrhage: randomized, double-blind, placebo-controlled trial. Rev Recent Clin Trials. 2019;14(4):286–291. doi: 10.2174/1574887114666190620112829.
    1. Zehtabchi S, Abdel Baki SG, Falzon L, Nishijima DK. Tranexamic acid for traumatic brain injury: a systematic review and meta-analysis. Am J Emerg Med. 2014;32(12):1503–1509. doi: 10.1016/j.ajem.2014.09.023.
    1. Ker K, Roberts I, Shakur H, Coats TJ. Antifibrinolytic drugs for acute traumatic injury. Cochrane Database Syst Rev. 2015;5:CD004896.
    1. Weng S, Wang W, Wei Q, Lan H, Su J, Xu Y. Effect of tranexamic acid in patients with traumatic brain injury: a systematic review and meta-analysis. World Neurosurg. 2019;123:128–135. doi: 10.1016/j.wneu.2018.11.214.
    1. Cai J, Ribkoff J, Olson S, Raghunathan V, Al-Samkari H, DeLoughery TG, et al. The many roles of tranexamic acid: an overview of the clinical indications for TXA in medical and surgical patients. Eur J Haematol. 2020;104(2):79–87. doi: 10.1111/ejh.13348.
    1. Woman Trial Collaborators Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet. 2017;389(10084):2105–2116. doi: 10.1016/S0140-6736(17)30638-4.
    1. Fillingham YA, Ramkumar DB, Jevsevar DS, Yates AJ, Bini SA, Clarke HD, et al. Tranexamic acid use in total joint arthroplasty: the clinical practice guidelines endorsed by the American Association of hip and Knee Surgeons, American Society of Regional Anesthesia and Pain Medicine, American Academy of Orthopaedic surgeons, hip society, and knee society. J Arthroplast. 2018;33(10):3065–3069. doi: 10.1016/j.arth.2018.08.002.
    1. Wada T, Gando S, Maekaw K, Katabami K, Sageshima H, Hayakawa M, et al. Disseminated intravascular coagulation with increased fibrinolysis during the early phase of isolated traumatic brain injury. Crit Care. 2017;21(1):219. doi: 10.1186/s13054-017-1808-9.
    1. World Health Organization. Model List of Essential Medicines 21st, 2019 . Accessed 1 May 2020.
    1. Lin Z, Xiaoyi Z. Tranexamic acid-associated seizures: a meta-analysis. Seizure. 2016;36:70–73. doi: 10.1016/j.seizure.2016.02.011.

Source: PubMed

3
Prenumerera